Research Article
BibTex RIS Cite

Kronik böbrek hastalarında ferrik karboksimaltoz tedavisinin serum fosfor düzeyine etkisi

Year 2021, Volume: 46 Issue: 1, 266 - 272, 31.03.2021
https://doi.org/10.17826/cumj.794501

Abstract

Amaç: Çalışmamızda kronik böbrek hastalarında Ferrik karboksimaltoz (FKM) replasmanının başta fosfor olmak üzere mineral metabolizma parametreleri ve anemi profili üzerindeki etkisinin araştırılması amaçlanmıştır.
Gereç ve Yöntem: Eylül 2018 ve Mart 2020 tarihleri arasında kronik böbrek hastalığı nedeniyle takip edilen ve demir eksikliği anemisi nedeniyle FKM tedavisi verilmiş 59 hasta çalışmaya dahil edilmiştir. Tüm hastalara FKM tek doz 1000mg olarak verilmiş, tedavi öncesi ve tedavi sonrası 1. ay ve 3. ay laboratuvar tetkikleri değerlendirilmiştir.
Bulgular: Tedavi öncesi ortalama serum fosfor düzeyi 3.82±0.65 mg/dL, hemoglobin değeri 11.19±1.55 g/dL ve ferritin düzeyi 25.70 (11.90-54.70) µg/L bulunmuştur. FKM replasmanı sonrası 1. ayda 19 hastada (%32.2) hipofosfatemi gelişmiştir ve serum fosfor düzeyinde başlangıca göre ortalama %17.8 oranında düşüş izlenirken kalsiyum, PTH, 25(OH)D vitamini, kreatinin ve eGFR düzeylerinde anlamlı değişiklik olmamıştır. Hiçbir hastada FKM ilişkili yan etki gözlenmemiştir. Tedavi sonrası 3. ayda 25 hastada (%42.3) hemoglobin değeri ≥1 g/dL artış göstermiştir.
Sonuç: Diyalize girmeyen kronik böbrek hastalarında demir eksikliği anemisi tedavisinde FKM iyi tolere edilen ve hızlı etki gösteren bir parenteral tedavi seçeneğidir. Sıklıkla asemptomatik ve geçici olarak ortaya çıkan hipofosfatemi önemsiz ve tedavi kararını etkilemeyecek bir yan etki olarak kabul edilebilir.

References

  • 1. Glaspy JA, Lim-Watson MZ, Libre MA, Karkare SS, Hadker N, Bajic-Lucas A, et al. Hypophosphatemia Associated with Intravenous Iron Therapies for Iron Deficiency Anemia: A Systematic Literature Review. Ther Clin Risk Manag 2020;16:245-59.
  • 2. Camaschella C. Iron-Deficiency Anemia. N Engl J Med 2015;373(5):485-6.
  • 3. Gotloib L, Silverberg D, Fudin R, Shostak A. Iron deficiency is a common cause of anemia in chronic kidney disease and can often be corrected with intravenous iron. J Nephrol 2006;19(2):161-7.
  • 4. Onken JE, Bregman DB, Harrington RA, Morris D, Buerkert J, Hamerski D, et al. Ferric carboxymaltose in patients with iron-deficiency anemia and impaired renal function: the REPAIR-IDA trial. Nephrol Dial Transplant 2014;29(4):833-42.
  • 5. Qunibi WY, Martinez C, Smith M, Benjamin J, Mangione A, Roger SD. A randomized controlled trial comparing intravenous ferric carboxymaltose with oral iron for treatment of iron deficiency anaemia of non-dialysis-dependent chronic kidney disease patients. Nephrol Dial Transplant 2011;26(5):1599-607.
  • 6. Sari V, Atiqi R, Hoorn EJ, Heijboer AC, van Gelder T, Hesselink DA. Ferric carboxymaltose-induced hypophosphataemia after kidney transplantation. Neth J Med 2017;75(2):65-73.
  • 7. Charytan C, Bernardo MV, Koch TA, Butcher A, Morris D, Bregman DB. Intravenous ferric carboxymaltose versus standard medical care in the treatment of iron deficiency anemia in patients with chronic kidney disease: a randomized, active-controlled, multi-center study. Nephrol Dial Transplant 2013;28(4):953-64.
  • 8. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 2009;361(25):2436-48.
  • 9. Van Wyck DB, Mangione A, Morrison J, Hadley PE, Jehle JA, Goodnough LT. Large-dose intravenous ferric carboxymaltose injection for iron deficiency anemia in heavy uterine bleeding: a randomized, controlled trial. Transfusion 2009;49(12):2719-28.
  • 10. Steinmetz T, Tschechne B, Harlin O, Klement B, Franzem M, Wamhoff J, et al. Clinical experience with ferric carboxymaltose in the treatment of cancer- and chemotherapy-associated anaemia. Ann Oncol 2013;24(2):475-82.
  • 11. Lyseng-Williamson KA, Keating GM. Ferric carboxymaltose: a review of its use in iron-deficiency anaemia. Drugs 2009;69(6):739-56.
  • 12. Prats M, Font R, Garcia C, Cabre C, Jariod M, Vea AM. Effect of ferric carboxymaltose on serum phosphate and C-terminal FGF23 levels in non-dialysis chronic kidney disease patients: post-hoc analysis of a prospective study. BMC Nephrol 2013;14:167.
  • 13. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150(9):604-12.
  • 14. Agarwal R, Rizkala AR, Bastani B, Kaskas MO, Leehey DJ, Besarab A. A randomized controlled trial of oral versus intravenous iron in chronic kidney disease. Am J Nephrol 2006;26(5):445-54.
  • 15. Wolf M, Chertow GM, Macdougall IC, Kaper R, Krop J, Strauss W. Randomized trial of intravenous iron-induced hypophosphatemia. JCI Insight 2018;3(23).
  • 16. Bhattacharyya N, Chong WH, Gafni RI, Collins MT. Fibroblast growth factor 23: state of the field and future directions. Trends Endocrinol Metab 2012;23(12):610-8.
  • 17. Wolf M, White KE. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr Opin Nephrol Hypertens 2014;23(4):411-9.
  • 18. Wolf M, Koch TA, Bregman DB. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 2013;28(8):1793-803.
  • 19. Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab 2009;94(7):2332-7.
  • 20. Huang LL, Lee D, Troster SM, Kent AB, Roberts MA, Macdougall IC, et al. A controlled study of the effects of ferric carboxymaltose on bone and haematinic biomarkers in chronic kidney disease and pregnancy. Nephrol Dial Transplant 2018;33(9):1628-35.
  • 21. McLane JA, Fell RD, McKay RH, Winder WW, Brown EB, Holloszy JO. Physiological and biochemical effects of iron deficiency on rat skeletal muscle. Am J Physiol 1981;241(1):C47-54.
  • 22. Fang W, McMahon LP, Bloom S, Garg M. Symptomatic severe hypophosphatemia after intravenous ferric carboxymaltose. JGH Open 2019;3(5):438-40.

The impact of ferric carboxymaltose treatment on serum phosphorus levels in chronic kidney disease

Year 2021, Volume: 46 Issue: 1, 266 - 272, 31.03.2021
https://doi.org/10.17826/cumj.794501

Abstract

Purpose: This study aimed to investigate the effect of ferric carboxymaltose (FCM) replacement on mineral metabolism parameters, mainly the phosphorus, and the anemia profile in patients with chronic kidney disease (CKD).
Materials and Methods: A total of 59 patients with CKD who received FCM treatment for iron deficiency anemia were included in this study conducted between September 2018 and March 2020. All patients received single-dose 1000 mg FCM and post-treatment 1st month and 3rd month laboratory parameters were recorded.
Results: Pre-treatment mean±SD serum phosphorus levels were 3.82±0.65 mg/dL, hemoglobin levels were 11.19±1.55 g/dL and ferritin levels were 25.70 (11.90-54.70) µg/L. After 1-month FCM treatment, hypophosphatemia was noted in 19(32.2%) patients with decrease from baseline serum phosphorus levels by 17.8%, while no significant change occurred in PTH, 25(OH)D vitamin, creatinine and eGFR levels. None of patients developed adverse events related to FCM. In the 3rd month of treatment, hemoglobin levels were increased by ≥1 g/dL in 25(42.3%) patients.
Conclusion: In CKD patients not on dialysis, FCM seems to be a fast acting parenteral treatment alternative with favorable tolerance. Hypophosphatemia develops as an asymptomatic and transient side effect in most of cases with significant impact on treatment decision.

References

  • 1. Glaspy JA, Lim-Watson MZ, Libre MA, Karkare SS, Hadker N, Bajic-Lucas A, et al. Hypophosphatemia Associated with Intravenous Iron Therapies for Iron Deficiency Anemia: A Systematic Literature Review. Ther Clin Risk Manag 2020;16:245-59.
  • 2. Camaschella C. Iron-Deficiency Anemia. N Engl J Med 2015;373(5):485-6.
  • 3. Gotloib L, Silverberg D, Fudin R, Shostak A. Iron deficiency is a common cause of anemia in chronic kidney disease and can often be corrected with intravenous iron. J Nephrol 2006;19(2):161-7.
  • 4. Onken JE, Bregman DB, Harrington RA, Morris D, Buerkert J, Hamerski D, et al. Ferric carboxymaltose in patients with iron-deficiency anemia and impaired renal function: the REPAIR-IDA trial. Nephrol Dial Transplant 2014;29(4):833-42.
  • 5. Qunibi WY, Martinez C, Smith M, Benjamin J, Mangione A, Roger SD. A randomized controlled trial comparing intravenous ferric carboxymaltose with oral iron for treatment of iron deficiency anaemia of non-dialysis-dependent chronic kidney disease patients. Nephrol Dial Transplant 2011;26(5):1599-607.
  • 6. Sari V, Atiqi R, Hoorn EJ, Heijboer AC, van Gelder T, Hesselink DA. Ferric carboxymaltose-induced hypophosphataemia after kidney transplantation. Neth J Med 2017;75(2):65-73.
  • 7. Charytan C, Bernardo MV, Koch TA, Butcher A, Morris D, Bregman DB. Intravenous ferric carboxymaltose versus standard medical care in the treatment of iron deficiency anemia in patients with chronic kidney disease: a randomized, active-controlled, multi-center study. Nephrol Dial Transplant 2013;28(4):953-64.
  • 8. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 2009;361(25):2436-48.
  • 9. Van Wyck DB, Mangione A, Morrison J, Hadley PE, Jehle JA, Goodnough LT. Large-dose intravenous ferric carboxymaltose injection for iron deficiency anemia in heavy uterine bleeding: a randomized, controlled trial. Transfusion 2009;49(12):2719-28.
  • 10. Steinmetz T, Tschechne B, Harlin O, Klement B, Franzem M, Wamhoff J, et al. Clinical experience with ferric carboxymaltose in the treatment of cancer- and chemotherapy-associated anaemia. Ann Oncol 2013;24(2):475-82.
  • 11. Lyseng-Williamson KA, Keating GM. Ferric carboxymaltose: a review of its use in iron-deficiency anaemia. Drugs 2009;69(6):739-56.
  • 12. Prats M, Font R, Garcia C, Cabre C, Jariod M, Vea AM. Effect of ferric carboxymaltose on serum phosphate and C-terminal FGF23 levels in non-dialysis chronic kidney disease patients: post-hoc analysis of a prospective study. BMC Nephrol 2013;14:167.
  • 13. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150(9):604-12.
  • 14. Agarwal R, Rizkala AR, Bastani B, Kaskas MO, Leehey DJ, Besarab A. A randomized controlled trial of oral versus intravenous iron in chronic kidney disease. Am J Nephrol 2006;26(5):445-54.
  • 15. Wolf M, Chertow GM, Macdougall IC, Kaper R, Krop J, Strauss W. Randomized trial of intravenous iron-induced hypophosphatemia. JCI Insight 2018;3(23).
  • 16. Bhattacharyya N, Chong WH, Gafni RI, Collins MT. Fibroblast growth factor 23: state of the field and future directions. Trends Endocrinol Metab 2012;23(12):610-8.
  • 17. Wolf M, White KE. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr Opin Nephrol Hypertens 2014;23(4):411-9.
  • 18. Wolf M, Koch TA, Bregman DB. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 2013;28(8):1793-803.
  • 19. Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab 2009;94(7):2332-7.
  • 20. Huang LL, Lee D, Troster SM, Kent AB, Roberts MA, Macdougall IC, et al. A controlled study of the effects of ferric carboxymaltose on bone and haematinic biomarkers in chronic kidney disease and pregnancy. Nephrol Dial Transplant 2018;33(9):1628-35.
  • 21. McLane JA, Fell RD, McKay RH, Winder WW, Brown EB, Holloszy JO. Physiological and biochemical effects of iron deficiency on rat skeletal muscle. Am J Physiol 1981;241(1):C47-54.
  • 22. Fang W, McMahon LP, Bloom S, Garg M. Symptomatic severe hypophosphatemia after intravenous ferric carboxymaltose. JGH Open 2019;3(5):438-40.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Urology
Journal Section Research
Authors

Emel Isıktas Sayılar 0000-0002-8824-6560

Publication Date March 31, 2021
Acceptance Date October 13, 2020
Published in Issue Year 2021 Volume: 46 Issue: 1

Cite

MLA Isıktas Sayılar, Emel. “Kronik böbrek hastalarında Ferrik Karboksimaltoz Tedavisinin Serum Fosfor düzeyine Etkisi”. Cukurova Medical Journal, vol. 46, no. 1, 2021, pp. 266-72, doi:10.17826/cumj.794501.