Research Article
BibTex RIS Cite

Effect of N-acetylcysteine on cisplatin induced apoptosis in rat kidney

Year 2022, Volume: 47 Issue: 2, 519 - 525, 30.06.2022

Abstract

Purpose: Cisplatin is one of the most potent and widely used chemotherapeutic agents for the treatment of a wide variety of solid organ cancers. However, due to various side-effects such as nephrotoxicity, its therapeutic applications are limited. In the current study, it was aimed to investigate the effects of N-acetylcysteine (NAC), which is an effective antioxidant and anti-inflammatory agent, on cisplatin-induced apoptosis in rat kidneys.
Materials and Methods: Twentyfour male Wistar rats were separated into 4 equal groups: Control, NAC-250, cisplatin (CP), and CP+NAC groups. Rats in the experimental groups were treated with intraperitoneally (i.p.) single-dose cisplatin (10 mg/kg) and NAC (i.p., 250 mg/kg) for 3 days.
Results: At the end of the experiment, nephrotoxicity was confirmed by blood urea nitrogen and creatinine levels, and the apoptotic changes were demonstrated by TdT-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and caspase-3 levels in rat kidneys. The number of TUNEL-positive cells and caspase-3 levels were significantly increased by cisplatin. Treating the rats with NAC significantly decreased TUNEL-positive cells and caspase-3 levels.
Conclusion: These data suggest that apoptotic cell death is involved in the pathogenesis of cisplatin-induced nephrotoxicity, and that the inhibition of apoptosis plays a central role in the beneficial effects of NAC.

Project Number

TDK-2014-5056

References

  • 1. Dilruba S, Kalayda G. Platinum‑based drugs: past, present and future. Cancer Chemother Pharmacol. 2016; 77: 1103-1124.
  • 2. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel). 2010; 2 (11): 2490-2518.
  • 3. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008; 73 (9): 994-1007.
  • 4. Almanric K, Marceau N, Cantin A, Bertin É. Risk factors for nephrotoxicity associated with cisplatin. Can J Hosp Pharm. 2017; 70 (2) :99-106.
  • 5. Nho JH, Jung HK, Lee MJ, Jang JH, Sim MO, Jeong DE, et al. Beneficial Effects of Cynaroside on Cisplatin-Induced Kidney Injury In Vitro and In Vivo. Toxicol Res. 2018; 34 (2): 133-141.
  • 6. Lau AH. Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int. 1999; 56 (4): 1295-1298.
  • 7. Kaushal GP, Kaushal V, Herzog C, Yang C. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy. 2008; 4 (5): 710-712.
  • 8. Hanigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther. 2003; 1: 47-61.
  • 9. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018; 31 (1): 15-25.
  • 10. Mi XJ, Hou JG, Wang Z, Han Y, Ren S, Hu JN, et al. The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK mediated pi3k/akt and p53 signaling pathways. Sci Rep. 2018; 29: 8 (1): 15922.
  • 11. Tanase DM, Gosav EM, Radu S, Costea CF, Ciocoiu M, Carauleanu A, et al. the predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int J Mol Sci. 2019; 20 (20): 5238.
  • 12. Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018; 52 (7): 751-762.
  • 13. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007; 7(4): 355-359.
  • 14. Gunturk EE, Yucel B, Gunturk I, Yazici C, Yay A, Kose K. The effects of N-acetylcysteine on cisplatin induced cardiotoxicity. Bratisl Lek Listy. 2019; 120 (6): 423-428.
  • 15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951; 193: 265-275.
  • 16. Sánchez-González PD, López-Hernández FJ, López-Novoa JM, Morales AI. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol. 2011; 41: 803-821.
  • 17. Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci. 2019; 20 (12): 3011.
  • 18. Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019; 26 (1): 25.
  • 19. Yano T, Itoh Y, Matsuo M, Kawashiri T, Egashira N, Oishi R. Involvement of both tumor necrosis factor-alpha-induced necrosis and p53-mediated caspase-dependent apoptosis in nephrotoxicity of cisplatin. Apoptosis. 2007; 12: 1901-1909.
  • 20. Guada M, Ganugula R, Vadhanam M, Ravi Kumar MNV. Urolithin A Mitigates Cisplatin-Induced Nephrotoxicity by Inhibiting Renal Inflammation and Apoptosis in an Experimental Rat Model. J Pharmacol Exp Ther. 2017; 363 (1): 58-65.
  • 21. Santos NA, Catão CS, Martins NM, Curti C, Bianchi ML, Santos AC. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol. 2007; 81 (7): 495-504.
  • 22. Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI. A Systematic Review of Strategies to Prevent Cisplatin-Induced Nephrotoxicity. Oncologist. 2017; 22 (5): 609-619.
  • 23. Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel). 2019; 8(5):111.
  • 24. Wu YJ, Muldoon LL, Neuwelt EA. The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J Pharmacol Exp Ther. 2005; 312 (2): 424-431.
  • 25. Sancho-Martínez SM, Prieto-García L, Prieto M, Fuentes-Calvo I, López-Novoa JM, Morales AI, et al. N-acetylcysteine transforms necrosis into apoptosis and affords tailored protection from cisplatin cytotoxicity. Toxicol Appl Pharmacol. 2018; 349: 83-93.
  • 26. Luo J, Tsuji T, Yasuda H, Sun Y, Fujigaki Y, Hishida A. The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol Dial Transplant. 2008; 23 (7): 2198-2205.
  • 27. Muldoon LL, Wu YJ, Pagel MA, Neuwelt EA. N-acetylcysteine chemoprotection without decreased cisplatin antitumor efficacy in pediatric tumor models. J Neurooncol. 2015; 121 (3): 433-440.
  • 28. Liu Y, Liu K, Wang N, Zhang H. N acetylcysteine induces apoptosis via the mitochondria dependent pathway but not via endoplasmic reticulum stress in H9c2 cells. Mol Med Rep. 2017; 16 (5): 6626-6633.

N-asetilsisteinin rat böbreklerinde sisplatin ile indüklenen apoptoz üzerine etkisi

Year 2022, Volume: 47 Issue: 2, 519 - 525, 30.06.2022

Abstract

için en güçlü ve yaygın olarak kullanılan kemoterapötik ajanlardan biridirAncak nefrotoksisite gibi çeşitli yan etkileri nedeniyle terapötik uygulamaları sınırlıdır. Bu çalışmada, etkili bir antioksidan ve antienflamatuar ajan olan N-asetilsistein (NAC)’in rat böbreklerinde sisplatin kaynaklı apoptoz üzerindeki etkilerinin araştırılması amaçlanmıştır.
Gereç ve Yöntem: Wistar cinsi erkek ratlar eşit sayıda olacak şekilde 4 gruba ayrıldı: Kontrol, NAC-250, sisplatin (CP) ve CP+NAC. Gruplardaki ratlara tek doz sisplatin (10 mg/kg) ve 3 gün NAC (250 mg/kg) intraperitoneal (i.p.) olarak uygulandı.
Bulgular: Deneyin sonunda, nefrotoksisite, kan üre nitrojen ve kreatinin seviyeleri ile doğrulandı ve apoptotik değişiklikler, sıçan böbreklerinde TdT aracılı deoksiüridin trifosfat nick-end etiketleme (TUNEL) ve kaspaz-3 seviyeleri ile gösterildi. TUNEL pozitif hücre sayısı ve kaspaz-3 seviyeleri sisplatin ile önemli ölçüde arttı. Sıçanları NAC ile tedavi etmek, TUNEL pozitif hücreleri ve kaspaz-3 seviyelerini önemli ölçüde azalttı.
Sonuç: Bu veriler, apoptotik hücre ölümünün sisplatin ile indüklenen nefrotoksisitenin patogenezinde etkili olduğunu ve apoptoz inhibisyonunun NAC'ın faydalı etkilerinde merkezi bir rol oynadığını göstermektedir.

Supporting Institution

Erciyes Üniversitesi

Project Number

TDK-2014-5056

References

  • 1. Dilruba S, Kalayda G. Platinum‑based drugs: past, present and future. Cancer Chemother Pharmacol. 2016; 77: 1103-1124.
  • 2. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel). 2010; 2 (11): 2490-2518.
  • 3. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008; 73 (9): 994-1007.
  • 4. Almanric K, Marceau N, Cantin A, Bertin É. Risk factors for nephrotoxicity associated with cisplatin. Can J Hosp Pharm. 2017; 70 (2) :99-106.
  • 5. Nho JH, Jung HK, Lee MJ, Jang JH, Sim MO, Jeong DE, et al. Beneficial Effects of Cynaroside on Cisplatin-Induced Kidney Injury In Vitro and In Vivo. Toxicol Res. 2018; 34 (2): 133-141.
  • 6. Lau AH. Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int. 1999; 56 (4): 1295-1298.
  • 7. Kaushal GP, Kaushal V, Herzog C, Yang C. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy. 2008; 4 (5): 710-712.
  • 8. Hanigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther. 2003; 1: 47-61.
  • 9. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018; 31 (1): 15-25.
  • 10. Mi XJ, Hou JG, Wang Z, Han Y, Ren S, Hu JN, et al. The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK mediated pi3k/akt and p53 signaling pathways. Sci Rep. 2018; 29: 8 (1): 15922.
  • 11. Tanase DM, Gosav EM, Radu S, Costea CF, Ciocoiu M, Carauleanu A, et al. the predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int J Mol Sci. 2019; 20 (20): 5238.
  • 12. Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018; 52 (7): 751-762.
  • 13. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007; 7(4): 355-359.
  • 14. Gunturk EE, Yucel B, Gunturk I, Yazici C, Yay A, Kose K. The effects of N-acetylcysteine on cisplatin induced cardiotoxicity. Bratisl Lek Listy. 2019; 120 (6): 423-428.
  • 15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951; 193: 265-275.
  • 16. Sánchez-González PD, López-Hernández FJ, López-Novoa JM, Morales AI. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol. 2011; 41: 803-821.
  • 17. Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci. 2019; 20 (12): 3011.
  • 18. Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019; 26 (1): 25.
  • 19. Yano T, Itoh Y, Matsuo M, Kawashiri T, Egashira N, Oishi R. Involvement of both tumor necrosis factor-alpha-induced necrosis and p53-mediated caspase-dependent apoptosis in nephrotoxicity of cisplatin. Apoptosis. 2007; 12: 1901-1909.
  • 20. Guada M, Ganugula R, Vadhanam M, Ravi Kumar MNV. Urolithin A Mitigates Cisplatin-Induced Nephrotoxicity by Inhibiting Renal Inflammation and Apoptosis in an Experimental Rat Model. J Pharmacol Exp Ther. 2017; 363 (1): 58-65.
  • 21. Santos NA, Catão CS, Martins NM, Curti C, Bianchi ML, Santos AC. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol. 2007; 81 (7): 495-504.
  • 22. Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI. A Systematic Review of Strategies to Prevent Cisplatin-Induced Nephrotoxicity. Oncologist. 2017; 22 (5): 609-619.
  • 23. Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel). 2019; 8(5):111.
  • 24. Wu YJ, Muldoon LL, Neuwelt EA. The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J Pharmacol Exp Ther. 2005; 312 (2): 424-431.
  • 25. Sancho-Martínez SM, Prieto-García L, Prieto M, Fuentes-Calvo I, López-Novoa JM, Morales AI, et al. N-acetylcysteine transforms necrosis into apoptosis and affords tailored protection from cisplatin cytotoxicity. Toxicol Appl Pharmacol. 2018; 349: 83-93.
  • 26. Luo J, Tsuji T, Yasuda H, Sun Y, Fujigaki Y, Hishida A. The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol Dial Transplant. 2008; 23 (7): 2198-2205.
  • 27. Muldoon LL, Wu YJ, Pagel MA, Neuwelt EA. N-acetylcysteine chemoprotection without decreased cisplatin antitumor efficacy in pediatric tumor models. J Neurooncol. 2015; 121 (3): 433-440.
  • 28. Liu Y, Liu K, Wang N, Zhang H. N acetylcysteine induces apoptosis via the mitochondria dependent pathway but not via endoplasmic reticulum stress in H9c2 cells. Mol Med Rep. 2017; 16 (5): 6626-6633.
There are 28 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research
Authors

Inayet Gunturk 0000-0002-8299-1359

Gönül Şeyda Seydel 0000-0001-9317-0719

Fatma Dağlı 0000-0003-2911-897X

Arzu Yay 0000-0001-8532-3543

Cevat Yazıcı 0000-0003-0625-9542

Kader Köse 0000-0002-1693-1155

Project Number TDK-2014-5056
Publication Date June 30, 2022
Acceptance Date March 16, 2022
Published in Issue Year 2022 Volume: 47 Issue: 2

Cite

MLA Gunturk, Inayet et al. “Effect of N-Acetylcysteine on Cisplatin Induced Apoptosis in Rat Kidney”. Cukurova Medical Journal, vol. 47, no. 2, 2022, pp. 519-25.