Research Article
BibTex RIS Cite

İdrar kotinin ve kotinin/kreatinin oranının çevresel tütün dumanı maruziyetinin bir biyolojik belirteci olarak kullanımı

Year 2022, Volume: 47 Issue: 3, 961 - 971, 30.09.2022
https://doi.org/10.17826/cumj.1087781

Abstract

Amaç: Çevresel Tütün Dumanına (ÇTD) maruz kalma, dünya çapında bir halk sağlığı sorunu olmaya devam etmektedir. Bu çalışmada, çocuklarda idrar kotinin düzeyleri ve kotinin/kreatinin oranlarını ölçerek ebeveynlerin evde sigara içme alışkanlıkları ile çocukların çevresel tütün dumanına maruz kalmaları arasındaki ilişkiyi incelemeyi amaçladık.
Gereç ve Yöntem: Vaka-kontrol tipindeki analitik çalışma 0-18 yaş grubundan 357 çocuk ile yapılmıştır. Olgu grubunu çevresel sigara dumanına maruz kalan 180 çocuk oluşturdu. Kontrol grubunu herhangi bir sağlık sorunu olmayan ve çevresel sigara dumanına maruz kalmayan 177 çocuk oluşturuldu. Spot idrardaki kotinin ve kreatinin seviyeleri her iki grupta da analiz edildi.
Bulgular: Ebeveynleri sigara içenlerde, kadın cinsiyette, eğitim düzeyi düşük babalarda ve evde 3 veya daha az oda bulunan çocukların idrar kotinin düzeyi istatistiksel olarak daha yüksek bulundu. Çocukların idrar kotinin/kreatinin oranı, ebeveynleri sigara içenlerde (15.91 pg/mg (1.54-147.54) - 7.90 pg/mg (1.29-68.52)), kadın cinsiyette (13.19 pg/mg (1.79-115.07) - 10.45 pg/mg (1.29-147.54)) istatistiksel olarak daha yüksek bulundu. ÇTD'ye maruz kalan gruptaki idrar kotinin seviyeleri, ÇTD'ye maruz kalan gruptan 1042 kat daha fazla etkilenmiştir [OR:1042,462, %95 GA (139.821.839-7772.246)].
Sonuç: Çalışmamızda ÇTD’ye maruz kalan çocuklarda idrar kotinin düzeyleri, ÇTD’ye maruz kalmayan çocuklara göre daha yüksek bulundu. Bu sonuçların ışığında, çocuklarda ÇTD'ye maruziyeti değerlendirmek için idrar kotinin düzeyi noninvaziv bir belirteç olarak kullanılabilir. Ebeveynler için eğitim müdahaleleri, ÇTD’ye maruz kalma konusundaki farkındalıklarını artırmak ve özellikle ev ortamında çocukların sağlığını korumak için doğru davranışları öğretmek için gereklidir.

Supporting Institution

Necmettin Erbakan Üniversitesi Meram Tıp Fakültesi Bilimsel Araştıma Projeleri

Project Number

151518002

References

  • 1.CDC/WHO (2009). Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO). Global Youth Tobacco Survey (GYTS). Atlanta GA. (http://www.cdc.gov/tobacco/global/gyts/index. htm, (Accessed 27 November 2021).
  • 2.International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans; Tobacco Smoke and Involuntary Smoking; IARC Scientific Publications: Lyon, France, 2004; Volume 83, pp. 36–40.
  • 3.World Health Organization. WHO Report on the Global Tobacco Epidemic, 2015: Raising Taxes on Tobacco; World Health Organization (WHO): Geneva, Switzerland, 2015. https://apps.who.int/iris/handle/10665/178574 (Accessed 12 November 2021).
  • 4. Protano C, Andreoli R, Mutti A, Manigrasso M, Avino P, Vitali M. Reference Intervals for Urinary Cotinine Levels and the Influence of Sampling Time and Other Predictors on Its Excretion Among Italian Schoolchildren. Int J Environ Res Public Health. 2018;15(4):817. doi: 10.3390/ijerph15040817. PMID: 29690510
  • 5.Quintana PJE, Hoh E, Dodder NG, Matt GE, Zakarian JM, Anderson KA, Akins B, Chu L, Hovell MF. Nicotine levels in silicone wristband samplers worn by children exposed to secondhand smoke and electronic cigarette vapor are highly correlated with child's urinary cotinine. J Expo Sci Environ Epidemiol. 2019;29(6):733-741.
  • 6. Paci E, Pigini D, Bauleo L, Ancona C, Forastiere F, Tranfo G. Urinary Cotinine Concentration and Self-Reported Smoking Status in 1075 Subjects Living in Central Italy. Int J Environ Res Public Health. 2018;15(4):804. doi: 10.3390/ijerph15040804.
  • 7. Navas-Acien A, Peruga A, Breysse P et al. Secondhand tobacco smoke in public places in Latin America, 2002–2003. JAMA 2004; 291: 2741–2745. doi:10.1001/jama.291.22.2741 PMID:15187056
  • 8. Makadia LD, Roper PJ, Andrews JO, Tingen MS. Tobacco Use and Smoke Exposure in Children: New Trends, Harm, and Strategies to Improve Health Outcomes. Curr Allergy Asthma Rep. 2017;17(8):55. doi: 10.1007/s11882-017-0723-0.
  • 9. Tovar MF, Ortiz W, Valderrama MA, Rodríguez F, Gamboa O, Maldonado MJ, Agudelo SI. Prevalence of urinary cotinine levels in children under 5 years of age during consultations for acute respiratory disease at the emergency department of the Universidad de La Sabana clinic. BMC Pediatr. 2020;20(1):296. doi: 10.1186/s12887-020-02193-8.
  • 10. Jeong SH, Jang BN, Kang SH, Joo JH, Park EC. Association between parents' smoking status and tobacco exposure in school-age children: assessment using major urine biomarkers. Sci Rep. 2021;11(1):4536. doi: 10.1038/s41598-021-84017-y.
  • 11. Susanto AD, Putri PD, Hudoyo A, Taufik FF, Nurwidya F, Andarini S. Urinary Cotinine Level in Indonesian Children Exposed to Domestic Cigarette Smoke. J Nat Sci Biol Med. 2018;9(1):77-81. doi: 10.4103/jnsbm.JNSBM_119_17.
  • 12. Protano C, Andreoli R, Manini P, Vitali M. How home-smoking habits affect children: a cross-sectional study using urinary cotinine measurement in Italy. Int J Public Health. 2012;57(6):885-92. doi: 10.1007/s00038-012-0354-0. Epub 2012 Mar 21.
  • 13. Bobrowska-Korzeniowska M, Stelmach I, Brzozowska A, Jerzyńska J, Mitał M, Stelmach W. The effect of passive smoking on exhaled nitric oxide in asthmatic children. Nitric Oxide. 2019;86:48-53. doi: 10.1016/j.niox.2019.01.012. Epub 2019 Feb 16.
  • 14. Turkish Statistical Institute. Global adult tobacco survey, Ankara, Turkey 2012 [Updated 2012; cited 2013 Oct]. Available from: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=13425(Accessed 20 November 2020).
  • 15. Global adult tobacco survey, Ankara, Turkey 2012 [cited 2020 Jan 30]. Available from: http://www.who.int/tobacco/surveillance/survey/gats/report_tur_2012.pdf?ua=1(Accessed 07 November 2020).
  • 16. Wang Y, Yang M, Huang Z, Tian L, Niu L, Xiao S. Urinary cotinine concentrations in preschool children showed positive associations with smoking fathers. Acta Paediatr. 2017;106(1):67-73. doi: 10.1111/apa.13637.
  • 17. Thomas CE, Wang R, Adams-Haduch J, Murphy SE, Ueland PM, Midttun Ø, Brennan P, Johansson M, Gao YT, Yuan JM. Urinary Cotinine Is as Good a Biomarker as Serum Cotinine for Cigarette Smoking Exposure and Lung Cancer Risk Prediction. Cancer Epidemiol Biomarkers Prev. 2020;29(1):127-132. doi: 10.1158/1055-9965.EPI-19-0653. Epub 2019 Nov 4. PMID: 31685561
  • 18. Kim J, Lee K. Changes in urinary cotinine concentrations in non-smoking adults from the Korean National Environmental Health Survey (KoNEHS) II (2012-2014) after implementation of partial smoke-free regulations. Int J Hyg Environ Health. 2020;224:113419. doi: 10.1016/j.ijheh.2019.113419. Epub 2019 Nov 21. PMID: 31761730
  • 19. Hovanec J, Weiß T, Koch H, Pesch B, Behrens T, Kendzia B, Arendt M, Dragano N, Moebus S, Schmidt B, Brüning T, Jöckel KH. Smoking and urinay cotinine by socioeconomic status in the Heinz Nixdorf Recall Study. J Epidemiol Community Health. 2019;73(6):489-495. doi: 10.1136/jech-2018-211952. Epub 2019 Feb 25.
  • 20. Achilihu H, Feng J, Wang L, Bernert JT. Tobacco Use Classification by Inexpensive Urinary Cotinine Immunoassay Test Strips. J Anal Toxicol. 2019;43(2):149-153. doi: 10.1093/jat/bky075.
  • 21. Cooper R. Effect of tobacco smoking on renal function. Indian J Med Res. 2006;124(3):261-8.
  • 22. Matt GE, Wahlgren DR, Hovell MF. Measuring environmental tobacco smoke exposure in infants and young children through urine cotinine and memory- based parental reports: Empirical findings and discussion. Tob Control 1999;8:282- 89. [CrossRef]
  • 23. Kamer B, Pasowska R, Grys W, Socha-Banasiak A, Kamer-Bartosińska A, Matczak-Rynkowska A, et al. Pre- and postnatal exposure of children to tobacco smoke during the first four years of life--observations of the authors. Ann Agric Environ Med. 2014;21(4):753-9. doi: 10.5604/12321966.1129928.
  • 24. Ziyab AH, Almari M, Al-Taiar A. Exposure to household secondhand smoke among adolescents in Kuwait: Results from two school-based cross-sectional studies. Tob Induc Dis. 2020;18:32. doi: 10.18332/tid/119116. eCollection 2020.
  • 25. Reese AC, James IR, Landau LI, Lesof PN. Relationship between urinary cotinine level and diagnosis in children admitted to hospital. Am Rev Respir Dis 1992;146: 66-70.
  • 26. Tung KY, Wu KY, Tsai CH, Su MW, Chen CH, Lin MH, Chen YC, Wu WC, Lee YL. Association of time-location patterns with urinary cotinine among asthmatic children under household environmental tobacco smoke exposure. Environ Res. 2013;124:7-12. doi: 10.1016/j.envres.2013.03.002. Epub 2013 Apr 23. PMID: 23623351
  • 27. Irvine L, Crombie IK, Clark RA, Slane PW, Goodman KE, Feyerabend C,et al. What determines levels of passive smoking in children with asthma? Thorax 1997;52:766 - 9

Use of urinary cotinine and cotinine/creatinine ratio as a biomarker of environmental tobacco exposure

Year 2022, Volume: 47 Issue: 3, 961 - 971, 30.09.2022
https://doi.org/10.17826/cumj.1087781

Abstract

Purpose: Exposure to Environmental Tobacco Smoke (ETS) remains a worldwide public health problem. The purpose of this study was to investigate the relationship between parents' smoking habits at home and children's exposure to environmental tobacco smoke by measuring urinary cotinine levels and urine cotinine/creatinine ratios in children.
Materials and Methods: This case-control typed analytical study was conducted with 357 children in the 0-18 age group. The case group consisted of 180 children exposed to environmental cigarette smoke. As the control group, it consisted of 177 healthy children and non-smoking in their family. The levels of cotinine and creatinine in spot urinary were analyzed in both groups.
Results: The urinary cotinine level of the children was found to be statistically higher in those whose parents were smokers, female gender, fathers with a low educational level, and those with 3 or fewer rooms in the house. The urinary cotinine/creatinine ratio of the children was found to be statistically higher in those whose parents were smokers (15.91 pg/mg (1.54-147.54) vs 7.90 pg/mg (1.29-68.52)), female gender (13.19 pg/mg (1.79-115.07) vs 10.45 pg/mg (1.29-147.54)). Urinary cotinine levels in the ETS exposed group were affected 1042 times more than in the ETS unexposed group [OR:1042,462, 95% CI (139.821.839-7772.246)].
Conclusion: In the present study, urinary cotinine levels were found to be higher in children exposed to tobacco smoke than in children not exposed to tobacco smoke. In the light of these results, urinary cotinine can be used as a biomarker to evaluate exposure to ETS in children. Educating parents is essential to raising their awareness of exposure to ETS and teaching the right behaviors to protect children's health, especially in the home environment.

Project Number

151518002

References

  • 1.CDC/WHO (2009). Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO). Global Youth Tobacco Survey (GYTS). Atlanta GA. (http://www.cdc.gov/tobacco/global/gyts/index. htm, (Accessed 27 November 2021).
  • 2.International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans; Tobacco Smoke and Involuntary Smoking; IARC Scientific Publications: Lyon, France, 2004; Volume 83, pp. 36–40.
  • 3.World Health Organization. WHO Report on the Global Tobacco Epidemic, 2015: Raising Taxes on Tobacco; World Health Organization (WHO): Geneva, Switzerland, 2015. https://apps.who.int/iris/handle/10665/178574 (Accessed 12 November 2021).
  • 4. Protano C, Andreoli R, Mutti A, Manigrasso M, Avino P, Vitali M. Reference Intervals for Urinary Cotinine Levels and the Influence of Sampling Time and Other Predictors on Its Excretion Among Italian Schoolchildren. Int J Environ Res Public Health. 2018;15(4):817. doi: 10.3390/ijerph15040817. PMID: 29690510
  • 5.Quintana PJE, Hoh E, Dodder NG, Matt GE, Zakarian JM, Anderson KA, Akins B, Chu L, Hovell MF. Nicotine levels in silicone wristband samplers worn by children exposed to secondhand smoke and electronic cigarette vapor are highly correlated with child's urinary cotinine. J Expo Sci Environ Epidemiol. 2019;29(6):733-741.
  • 6. Paci E, Pigini D, Bauleo L, Ancona C, Forastiere F, Tranfo G. Urinary Cotinine Concentration and Self-Reported Smoking Status in 1075 Subjects Living in Central Italy. Int J Environ Res Public Health. 2018;15(4):804. doi: 10.3390/ijerph15040804.
  • 7. Navas-Acien A, Peruga A, Breysse P et al. Secondhand tobacco smoke in public places in Latin America, 2002–2003. JAMA 2004; 291: 2741–2745. doi:10.1001/jama.291.22.2741 PMID:15187056
  • 8. Makadia LD, Roper PJ, Andrews JO, Tingen MS. Tobacco Use and Smoke Exposure in Children: New Trends, Harm, and Strategies to Improve Health Outcomes. Curr Allergy Asthma Rep. 2017;17(8):55. doi: 10.1007/s11882-017-0723-0.
  • 9. Tovar MF, Ortiz W, Valderrama MA, Rodríguez F, Gamboa O, Maldonado MJ, Agudelo SI. Prevalence of urinary cotinine levels in children under 5 years of age during consultations for acute respiratory disease at the emergency department of the Universidad de La Sabana clinic. BMC Pediatr. 2020;20(1):296. doi: 10.1186/s12887-020-02193-8.
  • 10. Jeong SH, Jang BN, Kang SH, Joo JH, Park EC. Association between parents' smoking status and tobacco exposure in school-age children: assessment using major urine biomarkers. Sci Rep. 2021;11(1):4536. doi: 10.1038/s41598-021-84017-y.
  • 11. Susanto AD, Putri PD, Hudoyo A, Taufik FF, Nurwidya F, Andarini S. Urinary Cotinine Level in Indonesian Children Exposed to Domestic Cigarette Smoke. J Nat Sci Biol Med. 2018;9(1):77-81. doi: 10.4103/jnsbm.JNSBM_119_17.
  • 12. Protano C, Andreoli R, Manini P, Vitali M. How home-smoking habits affect children: a cross-sectional study using urinary cotinine measurement in Italy. Int J Public Health. 2012;57(6):885-92. doi: 10.1007/s00038-012-0354-0. Epub 2012 Mar 21.
  • 13. Bobrowska-Korzeniowska M, Stelmach I, Brzozowska A, Jerzyńska J, Mitał M, Stelmach W. The effect of passive smoking on exhaled nitric oxide in asthmatic children. Nitric Oxide. 2019;86:48-53. doi: 10.1016/j.niox.2019.01.012. Epub 2019 Feb 16.
  • 14. Turkish Statistical Institute. Global adult tobacco survey, Ankara, Turkey 2012 [Updated 2012; cited 2013 Oct]. Available from: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=13425(Accessed 20 November 2020).
  • 15. Global adult tobacco survey, Ankara, Turkey 2012 [cited 2020 Jan 30]. Available from: http://www.who.int/tobacco/surveillance/survey/gats/report_tur_2012.pdf?ua=1(Accessed 07 November 2020).
  • 16. Wang Y, Yang M, Huang Z, Tian L, Niu L, Xiao S. Urinary cotinine concentrations in preschool children showed positive associations with smoking fathers. Acta Paediatr. 2017;106(1):67-73. doi: 10.1111/apa.13637.
  • 17. Thomas CE, Wang R, Adams-Haduch J, Murphy SE, Ueland PM, Midttun Ø, Brennan P, Johansson M, Gao YT, Yuan JM. Urinary Cotinine Is as Good a Biomarker as Serum Cotinine for Cigarette Smoking Exposure and Lung Cancer Risk Prediction. Cancer Epidemiol Biomarkers Prev. 2020;29(1):127-132. doi: 10.1158/1055-9965.EPI-19-0653. Epub 2019 Nov 4. PMID: 31685561
  • 18. Kim J, Lee K. Changes in urinary cotinine concentrations in non-smoking adults from the Korean National Environmental Health Survey (KoNEHS) II (2012-2014) after implementation of partial smoke-free regulations. Int J Hyg Environ Health. 2020;224:113419. doi: 10.1016/j.ijheh.2019.113419. Epub 2019 Nov 21. PMID: 31761730
  • 19. Hovanec J, Weiß T, Koch H, Pesch B, Behrens T, Kendzia B, Arendt M, Dragano N, Moebus S, Schmidt B, Brüning T, Jöckel KH. Smoking and urinay cotinine by socioeconomic status in the Heinz Nixdorf Recall Study. J Epidemiol Community Health. 2019;73(6):489-495. doi: 10.1136/jech-2018-211952. Epub 2019 Feb 25.
  • 20. Achilihu H, Feng J, Wang L, Bernert JT. Tobacco Use Classification by Inexpensive Urinary Cotinine Immunoassay Test Strips. J Anal Toxicol. 2019;43(2):149-153. doi: 10.1093/jat/bky075.
  • 21. Cooper R. Effect of tobacco smoking on renal function. Indian J Med Res. 2006;124(3):261-8.
  • 22. Matt GE, Wahlgren DR, Hovell MF. Measuring environmental tobacco smoke exposure in infants and young children through urine cotinine and memory- based parental reports: Empirical findings and discussion. Tob Control 1999;8:282- 89. [CrossRef]
  • 23. Kamer B, Pasowska R, Grys W, Socha-Banasiak A, Kamer-Bartosińska A, Matczak-Rynkowska A, et al. Pre- and postnatal exposure of children to tobacco smoke during the first four years of life--observations of the authors. Ann Agric Environ Med. 2014;21(4):753-9. doi: 10.5604/12321966.1129928.
  • 24. Ziyab AH, Almari M, Al-Taiar A. Exposure to household secondhand smoke among adolescents in Kuwait: Results from two school-based cross-sectional studies. Tob Induc Dis. 2020;18:32. doi: 10.18332/tid/119116. eCollection 2020.
  • 25. Reese AC, James IR, Landau LI, Lesof PN. Relationship between urinary cotinine level and diagnosis in children admitted to hospital. Am Rev Respir Dis 1992;146: 66-70.
  • 26. Tung KY, Wu KY, Tsai CH, Su MW, Chen CH, Lin MH, Chen YC, Wu WC, Lee YL. Association of time-location patterns with urinary cotinine among asthmatic children under household environmental tobacco smoke exposure. Environ Res. 2013;124:7-12. doi: 10.1016/j.envres.2013.03.002. Epub 2013 Apr 23. PMID: 23623351
  • 27. Irvine L, Crombie IK, Clark RA, Slane PW, Goodman KE, Feyerabend C,et al. What determines levels of passive smoking in children with asthma? Thorax 1997;52:766 - 9
There are 27 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research
Authors

Ahmet Öksüz 0000-0002-1556-8171

Ruhuşen Kutlu 0000-0002-8502-0232

İsmail Reisli 0000-0001-8247-6405

İbrahim Kılınc 0000-0002-7729-7557

Project Number 151518002
Publication Date September 30, 2022
Acceptance Date June 13, 2022
Published in Issue Year 2022 Volume: 47 Issue: 3

Cite

MLA Öksüz, Ahmet et al. “Use of Urinary Cotinine and cotinine/Creatinine Ratio As a Biomarker of Environmental Tobacco Exposure”. Cukurova Medical Journal, vol. 47, no. 3, 2022, pp. 961-7, doi:10.17826/cumj.1087781.