Research Article
BibTex RIS Cite

Serum oxidant, antioxidant, and paraoxonase levels in COVID-19 patients

Year 2022, Volume: 47 Issue: 4, 1531 - 1538, 28.12.2022
https://doi.org/10.17826/cumj.1167711

Abstract

Purpose: The aim of his study was to determine serum oxidant status (TOS), antioxidant status (TAS), and paraoxonase (PON1) levels and to determine their diagnostic values in patients diagnosed with COVID-19.
Materials and Methods: The research was carried out on patients diagnosed with COVID-19. Within the scope of the study, a total of 87 patients with a diagnosis of COVID-19, 48 (55.1%) male and 39 (44.9%) were evaluated. Total antioxidant determination was performed using a microplate reader according to the Erel method. To calculate the Oxidative stress index (OSI), TOS and TAS levels were determined.
Results: Male gender was associated with high PON1, smoking with high TOS, the presence of hypertension and Diabetes mellitus (DM) diseases with low OSI, and the presence of asthma with low PON1. High PON1 was found to be associated with shorter hospitalization duration and high TOS was associated with longer hospitalization duration. TAS and TOS levels increased significantly due to the increase in CRP, TOS levels due to the increase in neutrophil level, OSI levels due to the increase in leukocyte level, PON1 levels increased due to the increase in LDH level TAS, TOS, OSI, and PON1 cut-off values were 1.41 (AUC: 0.647), 4.56 (AUC: 0.493), 0.421 (AUC: 0.505) and 340 (AUC: 0.536), sensitivity values were 65.5, 55.2, 48.3 and 51.7; specificity values were calculated respectively as 62.1, 46.6, 34.5 and 53.4.
Conclusion: Although it is seen that oxidative stress types have diagnostic value, there is a need for more comprehensive studies with larger samples on the subject.

References

  • 1. Lu H, Stratton CW, Tang YW. The outbreak pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. Journal of medical virology. 2020;92:401-2
  • 2. Rajeswari S, Sanjeeva Reddy N. Efficacy of progressive muscle relaxation on pregnancy outcome among anxious Indian primi mothers. Iranian journal of nursing and midwifery research. 2020;25:23
  • 3. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX et al. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020;382:1708-1720
  • 4. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 2020;395:1054-1062.
  • 5. Heper Y. Enfeksiyon Hastalıkları Uzmanı Gözünden COVID-19 ve Kalp Bölüm 9. “Multidisipliner COVID-19 Bursa Tabip Odası Sürekli Tıp Eğitimi Pandemi Kitabı”. Ed. Heper C. Bursa Tabip Odası Yayınları 2020; 141-157.
  • 6. Liu Y, Yan LM, Wan L, Xiang TX, Le A, Liu JM et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020;20:656-57.
  • 7. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020;382:2372-374.
  • 8. Yelin I, Aharony N, Tamar ES, Argoetti A, Messer E, Beren-baum D. Evaluation of COVID-19 RT-qPCR test in multi sample pools. Clinical Infectious Diseases. 2020;71:2073-8.
  • 9. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of medical research. 2020;5:384-7. 10. Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radical Biology and Medicine, 2020;156:107-112.
  • 11. Garrido J, Gaspar A, Garrido EM, Miri R, Tavakkoli M, Pourali S et al. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie. 2012;94:961-7.
  • 12. Hadžović-Džuvo A, Valjevac A, Lepara O, Pjanić S, Hadži-muratović A, Mekić A. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosn J Basic Med Sci. 2014;14:56 13. Jones DP. Redefining oxidative stress. Antioxidants & redox signaling. 2006;8:1865-79.
  • 14. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8:72.
  • 15. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Medical Hypotheses. 2020;143:110-102.
  • 16. Smits SL, Lang A, Brand JM, Leijten LM, IJcken WF, EijkemansMJ et al. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog 2010;6:e1000756.
  • 17. Brand JM, Haagmans BL, Riel D, Osterhaus AD, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 2014;151:83–112.
  • 18. Rodríguez-Tomàs E, Iftimie S, Castañé H, Baiges-Gaya G, Hernández-Aguilera A, González-Viñas M et al. Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach. Antioxidants (Basel). 2021;2:991.
  • 19. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry. 2004;37:277-85.
  • 20. Erel O. A new automated colorimetric method for measur-ing total oxidant status. Clinical biochemistry. 2005;38:1103-11.
  • 21. Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatology international. 2008;28:317-21. 22. Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet. 1983;35:1126-1138.
  • 23. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B et al. Factors associated with oxidative stress in human populations. Am J Epidemiol. 2002;156:274-85.
  • 24. Ayub A, Mackness MI, Arrol S, Mackness B, Patel J, Durrington PN. Serum paraoxonase after myocardial infarction. Arterioscler, Thromb, Vasc Biol. 1999;19:330–5.
  • 25. Gabaldó X, Juanpere M, Castañé H, Rodríguez-Tomàs E, López-Azcona AF, Baiges-Gaya G et al. Usefulness of the Measurement of Serum Paraoxonase-1 Arylesterase Activity in the Diagnoses of COVID-19. Biomolecules. 2022;12:879.
  • 26. Camps J, Marsillach J, Joven J. The paraoxonases: role in human diseases and methodological difficulties in measurement. Crit Rev Clin Lab Sci. 2009;46:83-106.
  • 27. Camps J, Castañé H, Rodríguez-Tomàs E, Baiges-Gaya G, Hernández-Aguilera A, Arenas M, Iftimie S et al. On the Role of Paraoxonase-1 and Chemokine Ligand 2 (C-C motif) in Metabolic Alterations Linked to Inflammation and Disease. A 2021 Update. Biomolecules. 2021;11:971.
  • 28. Camps J, Iftimie S, García-Heredia A, Castro A, Joven J. Paraoxonases and infectious diseases. Clin Biochem. 2017;50:804-811.
  • 29. Iftimie S, García-Heredia A, Pujol I, Ballester F, Fort-Gallifa I, Simó JM et al. Preliminary study on serum paraoxonase-1 status and chemokine (C-C motif) ligand 2 in hospitalized elderly patients with catheter-associated asymptomatic bacteriuria. Eur J Clin Microbiol Infect Dis. 2016;35:1417-24.
  • 30. Iftimie S, García-Heredia A, Pujol I, Ballester F, Fort-Gallifa I, Simó JM et al. A preliminary study of paraoxonase-1 in infected patients with an indwelling central venous catheter. Clin Biochem. 2016;49:449-457.
  • 31. Zhang ZL, Hou YL, Li DT, Li FZ. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020;80:441-47. 32. Pormohammad A, Ghorbani S, Baradaran B, Khatami A, J Turner R, Mansournia MA et al. Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61,742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis. Microb Pathog. 2020;147:104-390.
  • 33. Karkhanei B, Talebi Ghane E, Mehri F. Evaluation of oxidative stress level: total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect. 2021;42:100-897.
  • 34. Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and oxidative stress. Biochemistry (Moscow), 2020;85:1543-1553.
  • 35. Pincemail J, Cavalier E, Charlier C, Cheramy–Bien JP, Brevers E, Courtois A et al. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A pilot study. Antioxidants, 2021;10:257.
  • 36. Çakırca G, Damar Çakırca T, Üstünel M, Torun A, Koyuncu I. Thiol level and total oxidant/antioxidant status in patients with COVID-19 infection. Irish Journal of Medical Science. 2022;191:1925-30.

COVID-19 hastalarında serum oksidan, antioksidan ve paraoksonaz düzeyleri

Year 2022, Volume: 47 Issue: 4, 1531 - 1538, 28.12.2022
https://doi.org/10.17826/cumj.1167711

Abstract

Amaç: Bu çalışmada, COVID-19 tanısı konan hastalarda serum oksidan, antioksidan ve paraoksonaz düzeylerinin belirlenmesi ve tanısal değerlerinin belirlenmesi amaçlanmıştır.
Gereç ve Yöntem: Araştırma, COVID-19 tanısı konulan hastalar üzerinde gerçekleştirilmiştir. Çalışma kapsamında COVID-19 tanılı 48 (%55,1) erkek ve 39 (%44,9) olmak üzere toplam 87 hasta değerlendirildi. Toplam antioksidan tayini, Erel yöntemine göre bir mikroplaka okuyucu kullanılarak yapıldı. Toplam oksidan tayini, Erel yöntemine göre bir mikroplaka okuyucu kullanılarak yapıldı. OSI hesaplamak için TOS ve TAS seviyeleri belirlendi.
Bulgular: Erkek cinsiyetin yüksek PON1 ile yüksek TOS ile sigara kullanımı, hipertansiyon ve DM hastalıkları varlığı ile düşük OSİ ve düşük PON1 ile astım varlığı ile ilişkili olduğu bulundu. Ayrıca yüksek PON1 daha kısa hastanede kalış süresi ve yüksek TOS daha uzun hastanede kalış süresi ile ilişkili bulunmuştur. CRP'deki artışa bağlı olarak TAS ve TOS seviyeleri, nötrofil seviyesindeki artışa bağlı olarak TOS seviyesi ve OSI seviyesi nedeniyle anlamlı olarak arttı. lökosit seviyesindeki artışa bağlı olarak PON1 seviyesi LDH seviyesindeki artışa bağlı olarak yükselmiştir TAS, TOS, OSI ve PON1 cut-off değerleri 1.41 (AUC: 0.647), 4.56 (AUC: 0.493) olmuştur. 0.421 (AUC: 0.505) ve 340 (AUC: 0.536), hassasiyet değerleri 65.5, 55.2, 48.3 ve 51.7; özgüllük değerleri sırasıyla 62.1, 46.6, 34.5 ve 53.4 olarak hesaplanmıştır.
Sonuç: Çalışmamız sonucunda oksidatif stres türlerinin tanısal değeri olduğu görülmekle birlikte konu ile ilgili daha geniş örneklemli daha kapsamlı çalışmalara ihtiyaç vardır.

References

  • 1. Lu H, Stratton CW, Tang YW. The outbreak pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. Journal of medical virology. 2020;92:401-2
  • 2. Rajeswari S, Sanjeeva Reddy N. Efficacy of progressive muscle relaxation on pregnancy outcome among anxious Indian primi mothers. Iranian journal of nursing and midwifery research. 2020;25:23
  • 3. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX et al. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020;382:1708-1720
  • 4. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 2020;395:1054-1062.
  • 5. Heper Y. Enfeksiyon Hastalıkları Uzmanı Gözünden COVID-19 ve Kalp Bölüm 9. “Multidisipliner COVID-19 Bursa Tabip Odası Sürekli Tıp Eğitimi Pandemi Kitabı”. Ed. Heper C. Bursa Tabip Odası Yayınları 2020; 141-157.
  • 6. Liu Y, Yan LM, Wan L, Xiang TX, Le A, Liu JM et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020;20:656-57.
  • 7. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020;382:2372-374.
  • 8. Yelin I, Aharony N, Tamar ES, Argoetti A, Messer E, Beren-baum D. Evaluation of COVID-19 RT-qPCR test in multi sample pools. Clinical Infectious Diseases. 2020;71:2073-8.
  • 9. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of medical research. 2020;5:384-7. 10. Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radical Biology and Medicine, 2020;156:107-112.
  • 11. Garrido J, Gaspar A, Garrido EM, Miri R, Tavakkoli M, Pourali S et al. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie. 2012;94:961-7.
  • 12. Hadžović-Džuvo A, Valjevac A, Lepara O, Pjanić S, Hadži-muratović A, Mekić A. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosn J Basic Med Sci. 2014;14:56 13. Jones DP. Redefining oxidative stress. Antioxidants & redox signaling. 2006;8:1865-79.
  • 14. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8:72.
  • 15. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Medical Hypotheses. 2020;143:110-102.
  • 16. Smits SL, Lang A, Brand JM, Leijten LM, IJcken WF, EijkemansMJ et al. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog 2010;6:e1000756.
  • 17. Brand JM, Haagmans BL, Riel D, Osterhaus AD, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 2014;151:83–112.
  • 18. Rodríguez-Tomàs E, Iftimie S, Castañé H, Baiges-Gaya G, Hernández-Aguilera A, González-Viñas M et al. Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach. Antioxidants (Basel). 2021;2:991.
  • 19. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry. 2004;37:277-85.
  • 20. Erel O. A new automated colorimetric method for measur-ing total oxidant status. Clinical biochemistry. 2005;38:1103-11.
  • 21. Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatology international. 2008;28:317-21. 22. Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet. 1983;35:1126-1138.
  • 23. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B et al. Factors associated with oxidative stress in human populations. Am J Epidemiol. 2002;156:274-85.
  • 24. Ayub A, Mackness MI, Arrol S, Mackness B, Patel J, Durrington PN. Serum paraoxonase after myocardial infarction. Arterioscler, Thromb, Vasc Biol. 1999;19:330–5.
  • 25. Gabaldó X, Juanpere M, Castañé H, Rodríguez-Tomàs E, López-Azcona AF, Baiges-Gaya G et al. Usefulness of the Measurement of Serum Paraoxonase-1 Arylesterase Activity in the Diagnoses of COVID-19. Biomolecules. 2022;12:879.
  • 26. Camps J, Marsillach J, Joven J. The paraoxonases: role in human diseases and methodological difficulties in measurement. Crit Rev Clin Lab Sci. 2009;46:83-106.
  • 27. Camps J, Castañé H, Rodríguez-Tomàs E, Baiges-Gaya G, Hernández-Aguilera A, Arenas M, Iftimie S et al. On the Role of Paraoxonase-1 and Chemokine Ligand 2 (C-C motif) in Metabolic Alterations Linked to Inflammation and Disease. A 2021 Update. Biomolecules. 2021;11:971.
  • 28. Camps J, Iftimie S, García-Heredia A, Castro A, Joven J. Paraoxonases and infectious diseases. Clin Biochem. 2017;50:804-811.
  • 29. Iftimie S, García-Heredia A, Pujol I, Ballester F, Fort-Gallifa I, Simó JM et al. Preliminary study on serum paraoxonase-1 status and chemokine (C-C motif) ligand 2 in hospitalized elderly patients with catheter-associated asymptomatic bacteriuria. Eur J Clin Microbiol Infect Dis. 2016;35:1417-24.
  • 30. Iftimie S, García-Heredia A, Pujol I, Ballester F, Fort-Gallifa I, Simó JM et al. A preliminary study of paraoxonase-1 in infected patients with an indwelling central venous catheter. Clin Biochem. 2016;49:449-457.
  • 31. Zhang ZL, Hou YL, Li DT, Li FZ. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020;80:441-47. 32. Pormohammad A, Ghorbani S, Baradaran B, Khatami A, J Turner R, Mansournia MA et al. Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61,742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis. Microb Pathog. 2020;147:104-390.
  • 33. Karkhanei B, Talebi Ghane E, Mehri F. Evaluation of oxidative stress level: total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect. 2021;42:100-897.
  • 34. Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and oxidative stress. Biochemistry (Moscow), 2020;85:1543-1553.
  • 35. Pincemail J, Cavalier E, Charlier C, Cheramy–Bien JP, Brevers E, Courtois A et al. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A pilot study. Antioxidants, 2021;10:257.
  • 36. Çakırca G, Damar Çakırca T, Üstünel M, Torun A, Koyuncu I. Thiol level and total oxidant/antioxidant status in patients with COVID-19 infection. Irish Journal of Medical Science. 2022;191:1925-30.
There are 32 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research
Authors

Rumeysa Duyuran 0000-0002-7110-0303

Hüseyin Gürbüz 0000-0002-4684-9363

Sinem Bayrakçı 0000-0002-7462-3134

Hülya Çiçek 0000-0002-1065-1582

Publication Date December 28, 2022
Acceptance Date September 26, 2022
Published in Issue Year 2022 Volume: 47 Issue: 4

Cite

MLA Duyuran, Rumeysa et al. “Serum Oxidant, Antioxidant, and Paraoxonase Levels in COVID-19 Patients”. Cukurova Medical Journal, vol. 47, no. 4, 2022, pp. 1531-8, doi:10.17826/cumj.1167711.