The potential neuroprotection efficacy of Atractylenolide III on kainic-acid derived temporal lobe epilepsy in male rats
Year 2024,
Volume: 49 Issue: 2, 446 - 459, 30.06.2024
Hüsniye Özalp
,
Yusuf Çamlıca
,
Leyla Şahin
,
Savaş Aktaş
,
Serap Yalın
,
Metin Yıldırım
,
Ayla Batu Öztürk
,
Özge Selin Çevik
Abstract
Purpose: Atractylenolide III (ATR III) is known for its anti-inflammatory and neuroprotective activities. In this study, we aimed to investigate the effects of ATR III on neuronal damage in temporal epileptic rats caused by kainic acid.
Materials and Methods: 16-week-old Wistar Albino rats were divided into three groups; control (C, n=8), kainic acid (KA, n=8), ATR III+ kainic acid (KA+ATR, n=8). After 21 days of injections of kainic acid, learning, and memory behavior, anxiety, and locomotor activity were evaluated. Neuron morphologies in the hippocampus were examined, the total number of neurons, and the number of degenerated neurons were determined, and the thickness of these regions was also measured. Changes in biochemical parameters such as MDA, SOD, GSHPx, AChE, and CAT were investigated to detect oxidative stress in the brain.
Results: There was no significant difference in the learning and memory function and locomotor activity. However, KA increased anxiety behavior without any effect of ATR III (closed arm duration, 244.90±25.17). There was no degeneration in the neurons of the control group. In the KA group, there was an increase in the number of degenerated neurons. In this group, the thicknesses in CA1, CA3, and DG regions were 37.39±1.90, 45.64±6.26 and 46.02±5.72 µm, respectively. In the ATR III+KA group, there were fewer degenerated neurons, less thinning of the hippocampus, and a higher number of normal neurons compared to the KA group. In this group, CA1, CA3, and DG thicknesses were calculated as 36.05±4.13, 47.09±7.09 and 43.07±5.91 µm, respectively.
Conclusion: These findings suggest that ATR III may have the potential as a therapeutic agent for reducing neuronal damage in temporal epilepsy. Further research is warranted to explore the underlying mechanisms and evaluate the clinical implications of ATR III in the treatment of epilepsy.
Project Number
2019 2-TP2 3507
References
- Novak A, Vizjak K, Rakusa M. Cognitive impairment in people with epilepsy. J Clin Med. 2022;11:267.
- Asadi-Pooya AA, Stewart GR, Abrams DJ, Sharan A. Prevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United States.World Neurosurg. 2017;99:662-6.
- Sarsılmaz A. Tek taraflı mezial temporal sklerozda karşı taraf hipokampüsün volüm değerlendirmesi. Bakırköy Tıp Dergisi. 2019;15:41-6.
- Aldenkamp AP, Overweg J, Gutter TH, Beun AM, Diepman L, Mulder OG. Effect of epilepsy, seizures and epileptiform EEG discharges on cognitive function. Acta Neurol. Scand. 1996;93:253-59.
- Miltiadous P, Stamatakis A, Koutsoudaki PN, Tiniakos DG, Stylianopoulou F. IGF-I ameliorates hippocampal neurodegeneration and protects against cognitive deficits in an animal model of temporal lobe epilepsy. Exp. Neurol.2011;231:223-35.
- Wahab A. Difficulties in treatment and management of epilepsy and challenges in new drug development.Pharmaceuticals. 2010;3:2090-110.
- Li Q, Chen XY, He L, Zhou D. Traditional Chinese medicine for epilepsy. Cochrane Database Syst. Rev.2009;3:CD006454..
- Wang J, Wong YK, Liao F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev Mol Med. 2018;20:4.
- Zhao Z, He X, Ma C, Wu S, Cuan Y, Sun Y et al. Excavating anticonvulsant compounds from prescriptions of traditional Chinese medicine in the treatment of epilepsy. Am J Chin Med. 2018;46:707-37.
- Gong WX, Zhou YZ, Qin XM, DU GH. Involvement of mitochondrial apoptotic pathway and MAPKs/NF-κ B inflammatory pathway in the neuroprotective effect of atractylenolide III in corticosterone-induced PC12 cells. Chin J Nat Med. 2019;17:264-74.
- Ji Q, Chen GRQ, Wang L. Anti-inflammatory activity of atractylenolide III through inhibition of nuclear factor-κB and mitogen-activated protein kinase pathways in mouse macrophages. Immunopharmacol. Immunotoxicol. 2016;38:98-102.
- Zhao H, Ji ZH, Liu C, Yu XY. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats. Neuroscience. 2015;290:485-91.
- Izumi H, Sasaki Y, Yabuki Y, Shinoda Y, Fujita N, Yomoda S et al. Memory improvement by Yokukansankachimpihange and Atractylenolide III in the olfactory bulbectomized mice. J Alzheimers Dis. 2016;5:35-45.
- Liu C, Zhao H, Ji ZH, Yu XY. Neuroprotection of atractylenolide III from Atractylodis macrocephalae against glutamate-induced neuronal apoptosis via inhibiting caspase signaling pathway. Neurochem Res. 2014;39:1753-8.
- Zhou Y, Huang S, Wu F, Zheng Q, Zhang F, Luo Y et al. Atractylenolide III reduces depressive-and anxiogenic-like behaviors in rat depression models.Neurochem Res. 2021;759:136050.
- Dawson GR, Tricklebank MD. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci. 1995;16:33-6.
- Cevik OS, Sahin L, Tamer L. Long term treadmill exercise performed to chronic social isolated rats regulate anxiety behavior without improving learning. Life Sci. 2018;200:126-33.
- Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47–60.
- Prophet EB, Mills B, Arrington JB, Sobin LH. Laboratory methods in histotechnology. armed forces institute of pathology. AJP. 1992;25:263.
- Hayat MA. Principles and Tecniques Of Electron Microscopy: Biological Applications, 4th Ed. Cambridge, London, 2000.
- Crowe AR, Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio Protoc. 2019;9:3465.
- Zhou Y, Huang S, Wu F, Zheng Q, Zhang F, Luo Y et al. Atractylenolide III reduces depressive-and anxiogenic-like behaviors in rat depression models. Neurosci Lett. 2021;759:136050.
- Gao Z, Lu Y, Jing J, Xu D. Study of osteoporosis treatment principles used historically by ancient physicians in Chinese Medicine. Chin J Integr Med. 2013;19:862-68.
- Liu C, Zhao H, Ji ZH, Yu XY. Neuroprotection of atractylenolide III from Atractylodis macrocephalae against glutamate-induced neuronal apoptosis via inhibitingcaspase signaling pathway. Neurochem Res. 2014;39:1753-8.
- Zuo MY, Tang TJ, Zhou P, Wang X, Ding R, Gu JF et al. Mechanism of atractylenolide in alleviating H9c2 cell apoptosis through ROS/GRP78/caspase-12 signaling pathway based on molecular docking. Zhong Yao Cai. 2022;47:4436-45.
- Xue MT, Sheng WJ, Song X, Shi YJ, Geng ZJ, Shen L et al. Atractylenolide III ameliorates spinal cord injury in rats by modulating microglial/macrophage polarization. CNS Neurosci Ther. 2022;28:1059-71.
- Hall ED. The role of oxygen radicals in traumatic injury: Clinical implications. J. Emerg.Med. 1993;11:31-6.
- Marzatico F, Cafe C. Oxygen radicals and other toxic oxygen metabolites as key mediators of the central nervous system tissue injury. Funct Neurol. 1993;8:51-66.
- Wang CC, Lin SY, Cheng HC, Hou WC. Pro-oxidant and cytotoxic activities of atractylenolide I in human promyeloleukemic HL-60 cells. Food Chem Toxicol. 2006;44:1308-15.
Atractylenolide III'ün erkek sıçanlarda kainik asit kaynaklı temporal lob epilepsisi üzerindeki potansiyel nörokoruyucu etkinliği
Year 2024,
Volume: 49 Issue: 2, 446 - 459, 30.06.2024
Hüsniye Özalp
,
Yusuf Çamlıca
,
Leyla Şahin
,
Savaş Aktaş
,
Serap Yalın
,
Metin Yıldırım
,
Ayla Batu Öztürk
,
Özge Selin Çevik
Abstract
Amaç: Atractilenolide III'ün (ATR III) antiinflamatuar ve nöroprotektif aktiviteleri olduğu bilinmektedir. Bu çalışmada ATR III' ün temporal epileptik sıçanlarda kainik asidin neden olduğu nöronal hasar üzerine etkilerini araştırmayı amaçladık.
Gereç ve Yöntem: 16 haftalık Wistar Albino sıçanları; kontrol (C, n=8), kainik asit (KA, n=8), ATR III+ kainik asit (KA+ATR, n=8) olacak şekilde üç gruba ayrıldı. 21 günlük kainik asit enjeksiyonundan sonra öğrenme ve hafıza davranışı, anksiyete ve lokomotor aktivite değerlendirildi. Hipokampustaki nöron morfolojileri incelendi, toplam nöron sayısı, dejenere nöron sayısı belirlendi ve bu bölgelerin kalınlıkları da ölçüldü. Beyindeki oksidatif stresi tespit etmek amacıyla MDA, SOD, GSHPx, AChE ve CAT gibi biyokimyasal parametrelerdeki değişiklikler araştırıldı.
Bulgular: Öğrenme ve hafıza fonksiyonu ile lokomotor aktivitede anlamlı bir fark yoktu. Ancak KA, ATR III' ün herhangi bir etkisi olmadan kaygı davranışını artırdı (Kapalı kolda geçirilen süre, 244.90±25.17). Kontrol grubunun nöronlarında herhangi bir dejenerasyon görülmedi. KA grubunda dejenere nöron sayısında artış görüldü. Bu grupta CA1, CA3 ve DG bölgelerindeki kalınlıklar sırasıyla 37,39±1,90, 45,64±6,26 ve 46,02±5,72 µm idi. ATR III+kainik asit grubunda, KA grubuna kıyasla daha az dejenere nöron, hipokampusta daha az incelme ve daha fazla sayıda normal nöron vardı. Bu grupta CA1, CA3 ve DG kalınlıkları sırasıyla 36,05±4,13, 47,09±7,09 ve 43,07±5,91 µm olarak hesaplandı.
Sonuç: Bu bulgular ATR III'ün temporal epilepside nöronal hasarı azaltmak için terapötik bir ajan olarak bir potansiyele sahip olduğunu göstermektedir. Altta yatan mekanizmaları araştırmak ve ATR III'ün epilepsi tedavisindeki klinik etkilerini değerlendirmek için daha fazla sayıda araştırmaya ihtiyaç duyulmaktadır.
Ethical Statement
Mersin Üniversitesi Lisansüstü Eğitim-Öğretim Yönetmeliğinde belirtilen kurallara uygun olarak hazırladığım bu tez çalışmasında,
- Tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,
- Görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlâk kurallarına uygun olarak sunduğumu,
- Başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,
- Atıfta bulunduğum eserlerin tümünü kaynak olarak kullandığımı,
- Kullanılan verilerde herhangi bir tahrifat yapmadığımı,
- Bu tezin herhangi bir bölümünü Mersin Üniversitesi veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı,
- Tezin tüm telif haklarını Mersin Üniversitesi’ne devrettiğimi
beyan ederim.
Supporting Institution
Mersin Üniversitesi, Bilimsel Araştırmalar Birimi
Project Number
2019 2-TP2 3507
Thanks
This study was supported by Mersin University BAP unit with the code 2019 2-TP2 3507.
References
- Novak A, Vizjak K, Rakusa M. Cognitive impairment in people with epilepsy. J Clin Med. 2022;11:267.
- Asadi-Pooya AA, Stewart GR, Abrams DJ, Sharan A. Prevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United States.World Neurosurg. 2017;99:662-6.
- Sarsılmaz A. Tek taraflı mezial temporal sklerozda karşı taraf hipokampüsün volüm değerlendirmesi. Bakırköy Tıp Dergisi. 2019;15:41-6.
- Aldenkamp AP, Overweg J, Gutter TH, Beun AM, Diepman L, Mulder OG. Effect of epilepsy, seizures and epileptiform EEG discharges on cognitive function. Acta Neurol. Scand. 1996;93:253-59.
- Miltiadous P, Stamatakis A, Koutsoudaki PN, Tiniakos DG, Stylianopoulou F. IGF-I ameliorates hippocampal neurodegeneration and protects against cognitive deficits in an animal model of temporal lobe epilepsy. Exp. Neurol.2011;231:223-35.
- Wahab A. Difficulties in treatment and management of epilepsy and challenges in new drug development.Pharmaceuticals. 2010;3:2090-110.
- Li Q, Chen XY, He L, Zhou D. Traditional Chinese medicine for epilepsy. Cochrane Database Syst. Rev.2009;3:CD006454..
- Wang J, Wong YK, Liao F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev Mol Med. 2018;20:4.
- Zhao Z, He X, Ma C, Wu S, Cuan Y, Sun Y et al. Excavating anticonvulsant compounds from prescriptions of traditional Chinese medicine in the treatment of epilepsy. Am J Chin Med. 2018;46:707-37.
- Gong WX, Zhou YZ, Qin XM, DU GH. Involvement of mitochondrial apoptotic pathway and MAPKs/NF-κ B inflammatory pathway in the neuroprotective effect of atractylenolide III in corticosterone-induced PC12 cells. Chin J Nat Med. 2019;17:264-74.
- Ji Q, Chen GRQ, Wang L. Anti-inflammatory activity of atractylenolide III through inhibition of nuclear factor-κB and mitogen-activated protein kinase pathways in mouse macrophages. Immunopharmacol. Immunotoxicol. 2016;38:98-102.
- Zhao H, Ji ZH, Liu C, Yu XY. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats. Neuroscience. 2015;290:485-91.
- Izumi H, Sasaki Y, Yabuki Y, Shinoda Y, Fujita N, Yomoda S et al. Memory improvement by Yokukansankachimpihange and Atractylenolide III in the olfactory bulbectomized mice. J Alzheimers Dis. 2016;5:35-45.
- Liu C, Zhao H, Ji ZH, Yu XY. Neuroprotection of atractylenolide III from Atractylodis macrocephalae against glutamate-induced neuronal apoptosis via inhibiting caspase signaling pathway. Neurochem Res. 2014;39:1753-8.
- Zhou Y, Huang S, Wu F, Zheng Q, Zhang F, Luo Y et al. Atractylenolide III reduces depressive-and anxiogenic-like behaviors in rat depression models.Neurochem Res. 2021;759:136050.
- Dawson GR, Tricklebank MD. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci. 1995;16:33-6.
- Cevik OS, Sahin L, Tamer L. Long term treadmill exercise performed to chronic social isolated rats regulate anxiety behavior without improving learning. Life Sci. 2018;200:126-33.
- Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47–60.
- Prophet EB, Mills B, Arrington JB, Sobin LH. Laboratory methods in histotechnology. armed forces institute of pathology. AJP. 1992;25:263.
- Hayat MA. Principles and Tecniques Of Electron Microscopy: Biological Applications, 4th Ed. Cambridge, London, 2000.
- Crowe AR, Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio Protoc. 2019;9:3465.
- Zhou Y, Huang S, Wu F, Zheng Q, Zhang F, Luo Y et al. Atractylenolide III reduces depressive-and anxiogenic-like behaviors in rat depression models. Neurosci Lett. 2021;759:136050.
- Gao Z, Lu Y, Jing J, Xu D. Study of osteoporosis treatment principles used historically by ancient physicians in Chinese Medicine. Chin J Integr Med. 2013;19:862-68.
- Liu C, Zhao H, Ji ZH, Yu XY. Neuroprotection of atractylenolide III from Atractylodis macrocephalae against glutamate-induced neuronal apoptosis via inhibitingcaspase signaling pathway. Neurochem Res. 2014;39:1753-8.
- Zuo MY, Tang TJ, Zhou P, Wang X, Ding R, Gu JF et al. Mechanism of atractylenolide in alleviating H9c2 cell apoptosis through ROS/GRP78/caspase-12 signaling pathway based on molecular docking. Zhong Yao Cai. 2022;47:4436-45.
- Xue MT, Sheng WJ, Song X, Shi YJ, Geng ZJ, Shen L et al. Atractylenolide III ameliorates spinal cord injury in rats by modulating microglial/macrophage polarization. CNS Neurosci Ther. 2022;28:1059-71.
- Hall ED. The role of oxygen radicals in traumatic injury: Clinical implications. J. Emerg.Med. 1993;11:31-6.
- Marzatico F, Cafe C. Oxygen radicals and other toxic oxygen metabolites as key mediators of the central nervous system tissue injury. Funct Neurol. 1993;8:51-66.
- Wang CC, Lin SY, Cheng HC, Hou WC. Pro-oxidant and cytotoxic activities of atractylenolide I in human promyeloleukemic HL-60 cells. Food Chem Toxicol. 2006;44:1308-15.