Assessment of genotoxic and cytotoxic effects in COVID-19 patients
Year 2025,
Volume: 50 Issue: 1, 11 - 21, 31.03.2025
Işıl Deniz Alıravcı
,
Yusuf Haydar Ertekin
,
Nihan Akıncı Kenanoğlu
,
Ahmet Ali Berber
Abstract
Purpose: The objective of our study was to ascertain whether the SARS-CoV-2 virus exerts direct cytotoxic and genotoxic effects on human blood defence cells.
Materials and Methods: An in vitro analysis was conducted to assess the cytotoxic and genotoxic effects of the virus using three established tests: the mitotic index (MI), micronucleus (MN), and comet assay (CA). These tests were applied to blood samples from 101 patients. The blood samples were simultaneously analyzed using the polymerase chain reaction (PCR) test. The study population included patients of all ages and genders who presented to the outpatient clinic with symptoms suggestive of a respiratory tract infection and fever.
Results: The frequency of MN in the human lymphocytes of COVID-19-infected patients (1.06) was higher compared to COVID-19-negative patients (0.68). Similarly, in COVID-19-positive individuals, parameters such as tail length (3.67), tail moment (1.786), and tail intensity in the comet assay showed a significant increase compared to the negative control, indicating DNA damage. In the cytotoxicity assessment, the MI frequency of COVID-19-positive individuals (0.041) was significantly lower than that of negative controls (0.051). Gender did not influence the cyto/genotoxicity (except for tail length) in SARS-CoV-2-infected patients. Among age groups, the SARS-CoV-2 virus increased MI frequency and tail intensity only in middle-aged individuals (26–36 years).
Conclusion: The SARS-CoV-2 virus has the potential to induce cytotoxic and genotoxic effects in the human lymphocytes of infected individuals.
Project Number
TSA-2022-4076
References
- Demirbilek Y, Pehlivantürk G, Özgüler ZÖ, Alp Meşe E. COVID-19 outbreak control, example of ministry of health of Turkey. Turk J Med Sci. 2020;50:489-94.
- Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-20.
- Kumari M, Lu RM, Li MC, Huang JL, Hsu FF, Ko SH et al. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. J Biomed Sci. 2022;29:68.
- Li YC, Bai W-Z, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552–5.
- Niemi MEK, Daly MJ, Ganna A. The human genetic epidemiology of COVID-19. Nat Rev Genet. 2022;23:533–46.
- Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther. 2021;6:344.
- Kerner G, Quintana-Murci L. The genetic and evolutionary determinants of COVID-19 susceptibility. Eur J Hum Genet. 2022;30:915-21.
- Alıravcı ID, Kaya S. Evaluation of the risk of hospitalization in health care workers ınfected with COVID-19 university hospital experience. Troia Medical Journal. 2023;4:92-7.
- Tempera I, Lieberman PM. Oncogenic viruses as entropic drivers of cancer evolution. Front Virol. 2021;1:753366.
- Karaismailoğlu MC. The evaluation of the genotoxic and cytotoxic effects of pyriproxyfen insecticide on allium cepa somatic chromosomes with mitotic activity, chromosome abnormality and micronucleus frequency. Turkish Journal of Life Sciences. 2016;1:65-9.
- Avuloğlu Yılmaz E, Mamur S, Erikel E, Yüzbaşıoğlu D, Ünal F. Laktitolün genotoksik ve sitotoksik etkilerinin incelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi. 2022;3:133-43.
- Deutschle T, Porkert U, Reiter R, Keck T, Riechelmann H. In vitro genotoxicity and cytotoxicity of benzalkonium chloride. Toxicol In Vitro 2006;20:1472-7.
- Vatan Ö, Bağdaş D, Çinkılıç N, Wehrend A, Özalp GR. Genotoxic and cytotoxic effects of the aglepristone, A progesterone antagonist, in Mid-gestation pregnancy termination in rabbits. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2015;21:241-6.
- Demirkaya AK, Gündoğdu G, Dodurga Y, Seçme M, Gündoğdu K. Parietinin HepG2 hepatoselüler karsinom hücrelerinde sitotoksik ve genotoksik etkisinin belirlenmesi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2019;14:29-37.
- Aksu P, Nur G, Gül S, Erciyas A, Tayfa Z, Diken-Allahverdi T et al. Genotoxic and cytotoxic effects of formic acid on human lymphocytes in vitro. Turk Hij Deney Biyol Derg. 2016;73:111-20.
- Kara M, Öztaş E, Özhan G. Acetamiprid-induced cyto- and genotoxicity in the AR42J pancreatic cell line. Turk J Pharm Sci. 2020;17:474-9.
- Elzbieta P, Tomasz P, Dominika K, Joanna S, Janusz B. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate. Mutat Res. 2010;696:122-9.
- Castan L, José da Silva C, Ferreira Molina E, Alves Dos Santos R. Comparative study of cytotoxicity and genotoxicity of commercial Jeffamines® and polyethyleneimine in CHO-K1 cells. J Biomed Mater Res B Appl Biomater. 2018;106:742-50.
- Tice RR, Strauss GH. The single cell gel/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells. 1995;13:207-14.
- Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res. 1985;147:29-36.
- McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, De Méo MP, Collins A. The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res. 1993;288:47-63.
- Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
- Kramer PJ. Genetic toxicology. J Pharm Pharmacol. 1998;50:395-405.
- Anderson D, Yu T, McGregor D. Comet assay responses as indicators of carcinogen exposure. Mutagen. 1998;13:539–55.
- Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M et al. The comet assay: topical issues. Mutagen. 2008;23:143–51.
- Speit G, Vasquez M, Hartmann A. The comet assay as an indicator test for germ cell genotoxicity. Mutat Res. 2009;681:3–12.
- Lent E, Crouse L, Quinn M, Wallace S. Assessment of the in vivo genotoxicity of isomers of dinitrotoluene using the alkaline Comet and peripheral blood micronucleus assays. Mutat Res. 2012;742:54–60.
- Calinisan J, Chan S, King A, Chan P. Human papillomavirus and blastocyst apoptosis. J Assist Reprod Genet. 2002;19:132–6.
- Araldi R, Melo T, Diniz N, Carvalho R, Beçak W, Stocco R. Bovine papillomavirus clastogenic effect analyzed in comet assay. Biomed Res Int. 2013;2013:630683.
- Bhaskar A, Bala J, Varshney A, Yadava P. Expression of measles virus nucleoprotein induces apoptosis and modulates diverse functional proteins in cultured mammalian cells. PLoS One. 2011;6:e18765.
- de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:e180–e190.
- Mohamed T, Endoh D, Oikawa S. DNA damage of blood lymphocytes and neutrophils in cattle with lymphosarcoma. Vet Med. 2011;56:504–9.
- IARC. The Report of Advisory Group to Recommend Priorities on IARC Monographs. Lyon, WHO-IARC, 2014.
- Gaglia MM, Munger K. More than just oncogenes: mechanisms of tumorigenesis by human viruses. Curr Opin Virol. 2018;32:48–59.
- Chanet R, Baïlle D, Golinelli-Cohen MP, Riquier S, Guittet O, Lepoivre M et al. Fe-S coordination defects in the replicative DNA polymerase delta cause deleterious DNA replication in vivo and subsequent DNA damage in the yeast Saccharomyces cerevisiae. G3 (Bethesda) 2021;11:jkab124.
- Pánico P, Ostrosky-Wegman P, Salazar AM. The potential role of COVID-19 in the induction of DNA damage. Mutat Res Rev Mutat Res. 2022;789:108411.
- Xu LH, Huang M, Fang SG, Liu DX. Coronavirus infection induces DNA replication stress partly through interaction of its nonstructural protein 13 with the p125 subunit of DNA polymerase δ. J Biol Chem. 2011;48:233-8.
- Yoshimoto FK. The proteins of severe acute respiratory syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 2020;39:198–216.
- Berti M, Cortez D, Lopes M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol. 2020;21:633–51.
- Prindle MJ, Loeb LA. DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen. 2012;53:666–82.
- Koussa NC, Smith DJ. Limiting DNA polymerase delta alters replication dynamics and leads to a dependence on checkpoint activation and recombination-mediated DNA repair. PLoS Genet. 2021;17:e1009322.
- Zhu Y, Yin J. A quantitative comet assay: imaging and analysis of virus plaques formed with a liquid overlay. J Virol Methods. 2007;139:100–2.
- Gonçalves SO, Luz TMD, Silva AM, de Souza SS, Montalvão MF, Guimarães ATB et al. Can spike fragments of SARS-CoV-2 induce genomic instability and DNA damage in the guppy, Poecilia reticulate? An unexpected effect of the COVID-19 pandemic. Sci Total Environ. 2022;825:153988.
- Gunaydin-Akyildiz A, Aksoy N, Boran T, Ilhan EN, Ozhan G. Favipiravir induces oxidative stress and genotoxicity in cardiac and skin cells. Toxicol Lett. 2022;371:9-16.
- Berardi V, Ricci F, Castelli M, Galati G, Risuleo G. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use. J Exp Clin Cancer Res. 2009;28:96.
COVID-19 hastalarında genotoksik ve sitotoksik etkilerin değerlendirilmesi
Year 2025,
Volume: 50 Issue: 1, 11 - 21, 31.03.2025
Işıl Deniz Alıravcı
,
Yusuf Haydar Ertekin
,
Nihan Akıncı Kenanoğlu
,
Ahmet Ali Berber
Abstract
Amaç: Çalışmamızda COVID-19 virüsünün insan lenfositleri üzerindeki doğrudan sitotoksik ve genotoksik etkisinin olup olmadığının saptanması amaçlanmıştır.
Gereç ve Yöntem:Virüsün sitotoksik/genotoksik etkileri 101 hastadan alınan kan örnekleri ile in vitro mitotik indeks (MI), Mikronükleus (MN) ve Comet Assay (SCGE) testleri kullanılarak değerlendirilmiştir. Hastalardan alınan kan örnekleri PCR testi ile eş zamanlı olarak analiz edilmiştir. Çalışmaya COVID-19 polikliniğine üst solunum yolu ve ateş şikayetleriyle başvuran her yaş grubundan ve cinsiyetten hastalar dahil edilmiştir.
Bulgular: COVID-19 ile enfekte olmuş hastaların insan lenfositlerindeki MN sıklığı (1.06) COVID-19 negatif hastalara (0.68) kıyasla artmıştır. Benzer şekilde COVID-19 pozitif bireylerde komet testindeki kuyruk uzunluğu (3.67), kuyruk momenti (1.786) ve kuyruk yoğunluğu parametreleri negative kontrole kıyasla önemli ölçüde artış göstererek DNA hasarına neden olmuşlardır. Sitotoksisite değerlendirmesinde COVID-19 pozitif bireylerin MI frekansı (0.041) negatiflere (0.051) göre anlamlı derecede düşmüştür. Cinsiyet SARS-CoV-2 enfekte hastalarda sito/genotoksisiteyi (kuyruk uzunluğu hariç) etkilememiştir. Yaş gruplarında, SARS-CoV-2 virüsü MI sıklığını ve kuyruk yoğunluğunu yalnızca orta yaşta (26-36) artırmıştır.
Sonuç: SARS-CoV-2 virüsü, COVID-19 ile enfekte hastalarda insan lenfositleri üzerinde sitotoksik ve genotoksik etkilere neden olabilir.
Ethical Statement
Local Ethics Committee Approval for this study was obtained from Clinical Research Ethics Committee of Çanakkale Onsekiz Mart University (Number: 2200079036 ,Decision no: 06-14, decision date: 06.04.2022).
Supporting Institution
Çanakkale Onsekiz Mart University, Scientific Research Coordination Unit
Project Number
TSA-2022-4076
References
- Demirbilek Y, Pehlivantürk G, Özgüler ZÖ, Alp Meşe E. COVID-19 outbreak control, example of ministry of health of Turkey. Turk J Med Sci. 2020;50:489-94.
- Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-20.
- Kumari M, Lu RM, Li MC, Huang JL, Hsu FF, Ko SH et al. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. J Biomed Sci. 2022;29:68.
- Li YC, Bai W-Z, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552–5.
- Niemi MEK, Daly MJ, Ganna A. The human genetic epidemiology of COVID-19. Nat Rev Genet. 2022;23:533–46.
- Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther. 2021;6:344.
- Kerner G, Quintana-Murci L. The genetic and evolutionary determinants of COVID-19 susceptibility. Eur J Hum Genet. 2022;30:915-21.
- Alıravcı ID, Kaya S. Evaluation of the risk of hospitalization in health care workers ınfected with COVID-19 university hospital experience. Troia Medical Journal. 2023;4:92-7.
- Tempera I, Lieberman PM. Oncogenic viruses as entropic drivers of cancer evolution. Front Virol. 2021;1:753366.
- Karaismailoğlu MC. The evaluation of the genotoxic and cytotoxic effects of pyriproxyfen insecticide on allium cepa somatic chromosomes with mitotic activity, chromosome abnormality and micronucleus frequency. Turkish Journal of Life Sciences. 2016;1:65-9.
- Avuloğlu Yılmaz E, Mamur S, Erikel E, Yüzbaşıoğlu D, Ünal F. Laktitolün genotoksik ve sitotoksik etkilerinin incelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi. 2022;3:133-43.
- Deutschle T, Porkert U, Reiter R, Keck T, Riechelmann H. In vitro genotoxicity and cytotoxicity of benzalkonium chloride. Toxicol In Vitro 2006;20:1472-7.
- Vatan Ö, Bağdaş D, Çinkılıç N, Wehrend A, Özalp GR. Genotoxic and cytotoxic effects of the aglepristone, A progesterone antagonist, in Mid-gestation pregnancy termination in rabbits. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2015;21:241-6.
- Demirkaya AK, Gündoğdu G, Dodurga Y, Seçme M, Gündoğdu K. Parietinin HepG2 hepatoselüler karsinom hücrelerinde sitotoksik ve genotoksik etkisinin belirlenmesi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2019;14:29-37.
- Aksu P, Nur G, Gül S, Erciyas A, Tayfa Z, Diken-Allahverdi T et al. Genotoxic and cytotoxic effects of formic acid on human lymphocytes in vitro. Turk Hij Deney Biyol Derg. 2016;73:111-20.
- Kara M, Öztaş E, Özhan G. Acetamiprid-induced cyto- and genotoxicity in the AR42J pancreatic cell line. Turk J Pharm Sci. 2020;17:474-9.
- Elzbieta P, Tomasz P, Dominika K, Joanna S, Janusz B. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate. Mutat Res. 2010;696:122-9.
- Castan L, José da Silva C, Ferreira Molina E, Alves Dos Santos R. Comparative study of cytotoxicity and genotoxicity of commercial Jeffamines® and polyethyleneimine in CHO-K1 cells. J Biomed Mater Res B Appl Biomater. 2018;106:742-50.
- Tice RR, Strauss GH. The single cell gel/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells. 1995;13:207-14.
- Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res. 1985;147:29-36.
- McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, De Méo MP, Collins A. The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res. 1993;288:47-63.
- Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
- Kramer PJ. Genetic toxicology. J Pharm Pharmacol. 1998;50:395-405.
- Anderson D, Yu T, McGregor D. Comet assay responses as indicators of carcinogen exposure. Mutagen. 1998;13:539–55.
- Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M et al. The comet assay: topical issues. Mutagen. 2008;23:143–51.
- Speit G, Vasquez M, Hartmann A. The comet assay as an indicator test for germ cell genotoxicity. Mutat Res. 2009;681:3–12.
- Lent E, Crouse L, Quinn M, Wallace S. Assessment of the in vivo genotoxicity of isomers of dinitrotoluene using the alkaline Comet and peripheral blood micronucleus assays. Mutat Res. 2012;742:54–60.
- Calinisan J, Chan S, King A, Chan P. Human papillomavirus and blastocyst apoptosis. J Assist Reprod Genet. 2002;19:132–6.
- Araldi R, Melo T, Diniz N, Carvalho R, Beçak W, Stocco R. Bovine papillomavirus clastogenic effect analyzed in comet assay. Biomed Res Int. 2013;2013:630683.
- Bhaskar A, Bala J, Varshney A, Yadava P. Expression of measles virus nucleoprotein induces apoptosis and modulates diverse functional proteins in cultured mammalian cells. PLoS One. 2011;6:e18765.
- de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:e180–e190.
- Mohamed T, Endoh D, Oikawa S. DNA damage of blood lymphocytes and neutrophils in cattle with lymphosarcoma. Vet Med. 2011;56:504–9.
- IARC. The Report of Advisory Group to Recommend Priorities on IARC Monographs. Lyon, WHO-IARC, 2014.
- Gaglia MM, Munger K. More than just oncogenes: mechanisms of tumorigenesis by human viruses. Curr Opin Virol. 2018;32:48–59.
- Chanet R, Baïlle D, Golinelli-Cohen MP, Riquier S, Guittet O, Lepoivre M et al. Fe-S coordination defects in the replicative DNA polymerase delta cause deleterious DNA replication in vivo and subsequent DNA damage in the yeast Saccharomyces cerevisiae. G3 (Bethesda) 2021;11:jkab124.
- Pánico P, Ostrosky-Wegman P, Salazar AM. The potential role of COVID-19 in the induction of DNA damage. Mutat Res Rev Mutat Res. 2022;789:108411.
- Xu LH, Huang M, Fang SG, Liu DX. Coronavirus infection induces DNA replication stress partly through interaction of its nonstructural protein 13 with the p125 subunit of DNA polymerase δ. J Biol Chem. 2011;48:233-8.
- Yoshimoto FK. The proteins of severe acute respiratory syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 2020;39:198–216.
- Berti M, Cortez D, Lopes M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol. 2020;21:633–51.
- Prindle MJ, Loeb LA. DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen. 2012;53:666–82.
- Koussa NC, Smith DJ. Limiting DNA polymerase delta alters replication dynamics and leads to a dependence on checkpoint activation and recombination-mediated DNA repair. PLoS Genet. 2021;17:e1009322.
- Zhu Y, Yin J. A quantitative comet assay: imaging and analysis of virus plaques formed with a liquid overlay. J Virol Methods. 2007;139:100–2.
- Gonçalves SO, Luz TMD, Silva AM, de Souza SS, Montalvão MF, Guimarães ATB et al. Can spike fragments of SARS-CoV-2 induce genomic instability and DNA damage in the guppy, Poecilia reticulate? An unexpected effect of the COVID-19 pandemic. Sci Total Environ. 2022;825:153988.
- Gunaydin-Akyildiz A, Aksoy N, Boran T, Ilhan EN, Ozhan G. Favipiravir induces oxidative stress and genotoxicity in cardiac and skin cells. Toxicol Lett. 2022;371:9-16.
- Berardi V, Ricci F, Castelli M, Galati G, Risuleo G. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use. J Exp Clin Cancer Res. 2009;28:96.