Notes on Prime Near-Rings with Multiplicative Derivation
Year 2017,
Volume: 38 Issue: 2, 355 - 363, 24.04.2017
Zeliha Bedir
,
Öznur Gölbaşı
Abstract
Let be a left near ring. A
map is called a nonzero
multiplicative derivation if holds for all In the present paper,
we shall extend some well known results concerning commutativity of prime rings
for nonzero multiplicative derivations of a left prime near-ring
References
- [1]. Bell, H. and Mason, G., On derivations in near rings, Near rings and Near fields, North-Holland Mathematical Studies, 137, 31-35, (1987).
- [2]. Bell, H. E., On derivations in near-rings II, Kluwer Academic Pub. Math. Appl., Dordr., 426, 191-197, (1997).
- [3]. Bell, H. E. and Kappe, L. C., Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungarica, 53, 339-346, (1989).
- [4]. Daif, M. N., When is a multiplicative derivation additive, Int. J. Math. Math. Sci., 14(3), 615-618, (1991).
- [5]. Daif, M. N. and Bell, H. E., Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15(1), 205-206, (1992).
- [6]. Goldman, H. and Semrl, P., Multiplicative derivations on , Monatsh Math., 121(3), 189-197, (1969).
- [7]. Herstein, I. N., A note on derivations, Canad. Math. Bull., 21(3), 369-370, (1978).
- [8]. Martindale III, W. S., When are multiplicative maps additive, Proc. Amer. Math. Soc., 21, 695-698, (1969).
- [9]. Kamal, A. M. and Al-Shaalan, K. H., Existence of derivations on near-rings, Math. Slovaca, 63, no:3, 431-438, (2013).
- [10]. Koç, E. and Gölbaşı, Ö., Semiprime near-rings with multiplicative generalized derivations, Fasciculi Mathematici, 57, 105-119, (2016).
- [11]. Posner, E. C. Derivations in Prime Rings, Proc. Amer. Math. Soc., 8, 1093-1100, (1957).
Çarpımsal Türevli Asal Yakın Halkalar Üzerine Notlar
Year 2017,
Volume: 38 Issue: 2, 355 - 363, 24.04.2017
Zeliha Bedir
,
Öznur Gölbaşı
Abstract
bir
sol yakın halka olsun. dönüşümü her için koşulunu sağlıyorsa ye bir çarpımsal türev denir. Bu makalede,
asal halkalarda iyi bilinen bazı komütatiflik koşulları, çarpımsal türevli sol
asal yakın halkalar için genelleştirilecektir.
References
- [1]. Bell, H. and Mason, G., On derivations in near rings, Near rings and Near fields, North-Holland Mathematical Studies, 137, 31-35, (1987).
- [2]. Bell, H. E., On derivations in near-rings II, Kluwer Academic Pub. Math. Appl., Dordr., 426, 191-197, (1997).
- [3]. Bell, H. E. and Kappe, L. C., Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungarica, 53, 339-346, (1989).
- [4]. Daif, M. N., When is a multiplicative derivation additive, Int. J. Math. Math. Sci., 14(3), 615-618, (1991).
- [5]. Daif, M. N. and Bell, H. E., Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15(1), 205-206, (1992).
- [6]. Goldman, H. and Semrl, P., Multiplicative derivations on , Monatsh Math., 121(3), 189-197, (1969).
- [7]. Herstein, I. N., A note on derivations, Canad. Math. Bull., 21(3), 369-370, (1978).
- [8]. Martindale III, W. S., When are multiplicative maps additive, Proc. Amer. Math. Soc., 21, 695-698, (1969).
- [9]. Kamal, A. M. and Al-Shaalan, K. H., Existence of derivations on near-rings, Math. Slovaca, 63, no:3, 431-438, (2013).
- [10]. Koç, E. and Gölbaşı, Ö., Semiprime near-rings with multiplicative generalized derivations, Fasciculi Mathematici, 57, 105-119, (2016).
- [11]. Posner, E. C. Derivations in Prime Rings, Proc. Amer. Math. Soc., 8, 1093-1100, (1957).