In this present work, we continue studying the estimation of Bernstein-Walsh
type for algebraic polynomials in the regions with quasiconformal boundary.
Abdullayev F.G., Dissertation (Ph.D.), Donetsk, 1986, 120 p.
Abdullayev F.G., Uniform Convergence of Generalized Bieberbach Polynomials in Re- gions with non-zero angles, Acta Mathematica Hungarica, 1997, 77, 3, 223-246.
Abdullayev F.G., On the some properties of the orthogonal polynomials over the region of the complex plane (Part III), Ukr.Math.J., 2001, Vol.53, No:12, pp.1934-1948.
Abdullayev F.G., The properties of the orthogonal polynomials with weight having singulerity on the boundary contour, J. of Comp. Anal. and Appl. , 2004, Vol.6, No: 1, pp. 43-59.
Ahlfors L.V., Lectures on Quasiconformal Mappings, Van Nostrand (Prinston, NJ, 1966).
Andrievskii V.V., Constructive characterization of the harmonic functions in domains with quasiconformal boundary, In: Quasiconformal continuation and Approximation by function in the set of the complex plane. Kiev, 1985 [in Russian]
Andrievskii V.V., Belyi V.I.& Dzyadyk V.K, Conformal invariants in constructive theory of functions of complex plane. Atlanta:World Federation Publ.Com., 1995.
Lehto O., Virtanen K.I., Quasiconformal Mapping in the Plane, Springer Verlag, Berlin, 1973.
Rickman S., Characterisation of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A, Mathematica., 1966, 395 , 30 p.
Stylianopoulos N., Fine asymptotics for Bergman orthogonal polynomials over do- mains with corners, CMFT 2009, Ankara, June 2009.
Hille E., Szeg¨o G., Tamarkin J.D., On some generalization of a theorem of A.Markoff , Duke Math., 1937, 3, p. 729-739.
Walsh J.L., Interpolation and Approximation by Rational Functions in the Complex Domain, AMS,1960.
ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY
Year 2012,
Volume: 33 Issue: 2, 32 - 45, 21.02.2013
Abdullayev F.G., Dissertation (Ph.D.), Donetsk, 1986, 120 p.
Abdullayev F.G., Uniform Convergence of Generalized Bieberbach Polynomials in Re- gions with non-zero angles, Acta Mathematica Hungarica, 1997, 77, 3, 223-246.
Abdullayev F.G., On the some properties of the orthogonal polynomials over the region of the complex plane (Part III), Ukr.Math.J., 2001, Vol.53, No:12, pp.1934-1948.
Abdullayev F.G., The properties of the orthogonal polynomials with weight having singulerity on the boundary contour, J. of Comp. Anal. and Appl. , 2004, Vol.6, No: 1, pp. 43-59.
Ahlfors L.V., Lectures on Quasiconformal Mappings, Van Nostrand (Prinston, NJ, 1966).
Andrievskii V.V., Constructive characterization of the harmonic functions in domains with quasiconformal boundary, In: Quasiconformal continuation and Approximation by function in the set of the complex plane. Kiev, 1985 [in Russian]
Andrievskii V.V., Belyi V.I.& Dzyadyk V.K, Conformal invariants in constructive theory of functions of complex plane. Atlanta:World Federation Publ.Com., 1995.
Lehto O., Virtanen K.I., Quasiconformal Mapping in the Plane, Springer Verlag, Berlin, 1973.
Rickman S., Characterisation of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A, Mathematica., 1966, 395 , 30 p.
Stylianopoulos N., Fine asymptotics for Bergman orthogonal polynomials over do- mains with corners, CMFT 2009, Ankara, June 2009.
Hille E., Szeg¨o G., Tamarkin J.D., On some generalization of a theorem of A.Markoff , Duke Math., 1937, 3, p. 729-739.
Walsh J.L., Interpolation and Approximation by Rational Functions in the Complex Domain, AMS,1960.
Abdullayev, F., & Aral, N. (2013). ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 33(2), 32-45.
AMA
Abdullayev F, Aral N. ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. February 2013;33(2):32-45.
Chicago
Abdullayev, F.g., and N.d. Aral. “ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 33, no. 2 (February 2013): 32-45.
EndNote
Abdullayev F, Aral N (February 1, 2013) ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 33 2 32–45.
IEEE
F. Abdullayev and N. Aral, “ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 33, no. 2, pp. 32–45, 2013.
ISNAD
Abdullayev, F.g. - Aral, N.d. “ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 33/2 (February 2013), 32-45.
JAMA
Abdullayev F, Aral N. ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013;33:32–45.
MLA
Abdullayev, F.g. and N.d. Aral. “ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 33, no. 2, 2013, pp. 32-45.
Vancouver
Abdullayev F, Aral N. ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013;33(2):32-45.