Laguerre spectral method with different basis functions
Year 2015,
Volume: 36 Issue: 3, 876 - 880, 13.05.2015
Ali Baderan
,
Hadi Darvıshı
Morteza Mohammad Nezhad Kıasary
Abstract
Abstract. In this paper a model has been solved using Laguerre spectral method with two different basis functions. Unlike classical method, all the boundary conditions will be satisfied using linear combination of Laguerre functions as basis functions. Numerical results show that using a new basis has less error and also leads to three diagonal matrix that has a conditions number which is smaller than that of the classical method.
References
- C. Bernardi, Y. Maday, Spectral method, in:P.G. Ciarlet, j. L. Lions (Eds.), Handbook of Numerical Analysis, Elsevier, Amsterdam, 1997, pp. 209-486.
- C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods, Springer-Verlag, Berlin, 2006.
- O. Coulaud, D. Funaro, O. Kavian, em Laguerre spectral approximation of elliptic problems in exterior domains, Comput. Methods Appl. Mech. Engrg. 80,(1990) 451–458.
- D. Funaro, Computational aspects of pseudospectral Laguerre approximations, Appl. Numer. Math. 6 (1990) 447–457.
- Ben-yu Guo, Spectral Methods and their Applications, World Scientific, Singapore 1998.
- Ben-yu Guo, He-ping Ma, Composite Legendre–Laguerre approximation in unbounded domains, J. Comput. Math. 19 (2001) 101–112.
- Ben-yu Guo, Shen Jie, Laguerre–Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math. 86 (2000).
- Ben-yu Guo, Shen Jie, Cheng-Long Xu, Generalized Laguerre approximation and its applications to exterior problems, J. Comput. Math. 23 (2005)113–130.
- Ben-yu Guo, Li-lian Wang, Zhong-qing Wang, Generalized Laguerre interpolation and pseudospectral method for unbounded domains, SIAM J. Numer.Anal. 43 (2006) 2567–2589.
- Ben-yu Guo, Cheng-long Xu, Mixed Laguerre–Legendre pseudospectral method for incompressible fluid flow in an infinite strip, Math. Comp. 72(2003) 95–125.
- Ben-yu Guo, Xiao-yong Zhang, A new generalized Laguerre approximation and its applications, J. Comput. Appl. Math. 181 (2005) 342–363.
- He-ping Ma, Ben-yu Guo, Composite Legendre–Laguerre pseudospectral approximation in unbounded domains, IMA J. Numer. Anal. 21 (2001)587–602.
- Shen Jie, Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J. Numer. Anal. 38 (2000) 1113–1133.
- Zhong-qing Wang, Ben-yu Guo, Yan-na Wu, Pseudospectral method using generalized Laguerre functions for singular problems on unboundeddomains, Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 1019–1038.
- Cheng-long Xu, Ben-yu Guo, Mixed Laguerre–Legendre spectral method for incompressible fluid flow in an infinite strip, Adv. Comput. Math. 16 (2002)77–96.
- Cheng-long Xu, Ben-yu Guo, Laguerre pseudospectral method for nonlinear partial differential equation, J. Comput. Math. 20 (2002) 413–428.
- Wang Zhong-qing, The Laguerre spectral method for solving Neumann boundary Value problems, Journal of Computational and Applied Mathematics, 235(2011), 3229– 32
- Jie Shen, Tao Tang, Li-Lian Wang, Spectral Methods,Algorithms, Analysis and Applications, Springer-Verlag Berlin Heidelberg. 2011. ou uy -neBoyuBa nliBa, o enugih qeulyg yg ga egeBuaih emuiuayBe y geaeBegiue ,ou uy -t uo e 0o ueaBa aeBegihaNeg piauegge uBnuayBe, g h. zuqeg. eiul. t1 y 1pyt. y17t -oaiy
Year 2015,
Volume: 36 Issue: 3, 876 - 880, 13.05.2015
Ali Baderan
,
Hadi Darvıshı
Morteza Mohammad Nezhad Kıasary
References
- C. Bernardi, Y. Maday, Spectral method, in:P.G. Ciarlet, j. L. Lions (Eds.), Handbook of Numerical Analysis, Elsevier, Amsterdam, 1997, pp. 209-486.
- C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods, Springer-Verlag, Berlin, 2006.
- O. Coulaud, D. Funaro, O. Kavian, em Laguerre spectral approximation of elliptic problems in exterior domains, Comput. Methods Appl. Mech. Engrg. 80,(1990) 451–458.
- D. Funaro, Computational aspects of pseudospectral Laguerre approximations, Appl. Numer. Math. 6 (1990) 447–457.
- Ben-yu Guo, Spectral Methods and their Applications, World Scientific, Singapore 1998.
- Ben-yu Guo, He-ping Ma, Composite Legendre–Laguerre approximation in unbounded domains, J. Comput. Math. 19 (2001) 101–112.
- Ben-yu Guo, Shen Jie, Laguerre–Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math. 86 (2000).
- Ben-yu Guo, Shen Jie, Cheng-Long Xu, Generalized Laguerre approximation and its applications to exterior problems, J. Comput. Math. 23 (2005)113–130.
- Ben-yu Guo, Li-lian Wang, Zhong-qing Wang, Generalized Laguerre interpolation and pseudospectral method for unbounded domains, SIAM J. Numer.Anal. 43 (2006) 2567–2589.
- Ben-yu Guo, Cheng-long Xu, Mixed Laguerre–Legendre pseudospectral method for incompressible fluid flow in an infinite strip, Math. Comp. 72(2003) 95–125.
- Ben-yu Guo, Xiao-yong Zhang, A new generalized Laguerre approximation and its applications, J. Comput. Appl. Math. 181 (2005) 342–363.
- He-ping Ma, Ben-yu Guo, Composite Legendre–Laguerre pseudospectral approximation in unbounded domains, IMA J. Numer. Anal. 21 (2001)587–602.
- Shen Jie, Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J. Numer. Anal. 38 (2000) 1113–1133.
- Zhong-qing Wang, Ben-yu Guo, Yan-na Wu, Pseudospectral method using generalized Laguerre functions for singular problems on unboundeddomains, Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 1019–1038.
- Cheng-long Xu, Ben-yu Guo, Mixed Laguerre–Legendre spectral method for incompressible fluid flow in an infinite strip, Adv. Comput. Math. 16 (2002)77–96.
- Cheng-long Xu, Ben-yu Guo, Laguerre pseudospectral method for nonlinear partial differential equation, J. Comput. Math. 20 (2002) 413–428.
- Wang Zhong-qing, The Laguerre spectral method for solving Neumann boundary Value problems, Journal of Computational and Applied Mathematics, 235(2011), 3229– 32
- Jie Shen, Tao Tang, Li-Lian Wang, Spectral Methods,Algorithms, Analysis and Applications, Springer-Verlag Berlin Heidelberg. 2011. ou uy -neBoyuBa nliBa, o enugih qeulyg yg ga egeBuaih emuiuayBe y geaeBegiue ,ou uy -t uo e 0o ueaBa aeBegihaNeg piauegge uBnuayBe, g h. zuqeg. eiul. t1 y 1pyt. y17t -oaiy