Research Article
BibTex RIS Cite
Year 2023, Volume: 2 Issue: 1, 27 - 36, 30.03.2023

Abstract

References

  • [1] Golovanov, I.M. (2001). Ore deposits of Uzbekistan. - T.: HIDROINGEO. 660 p.
  • [2] Segal, D. (1982). Theoretical Basis for Differentiation of Ferric-Iron Bearing Minerals, Using Landsat MSS Data. Proceedings of Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort Worth, TX: pp. 949-951.
  • [3] Ducart, D.F., Silva, A.M., Toledo, C.L.B., Assis, L.M. (2016). Mapping iron oxides with Landsat 8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Brazilian Journal of Geology. 46(3): 331-349...
  • [4] Gad, S., Kusky, T. (2006). Lithological Mapping in the Eastern Desert of Egypt, the Barramiya Area, using Landsat Thematic Mapper (TM). Journal of African Earth Sciences. 44: 196-202.
  • [5] Ciampalini, A., Garfagnoli, F., Del Ventisette, C., Moretti, S. (2013). Potential Use of Remote Sensing Techniques for Exploration of Iron Deposits in Western Sahara and Southwest of Algeria. Natural Resources Research. 22. doi:10.1007/s11053-013-9209-5.
  • [6] Salem, SM, El Gammal, EA. (2015). Iron ore prospection East Aswan, Egypt, using remote sensing techniques, Egypt. J. Remote Sensing Space Sci. doi:10.1016/j.ejrs.2015.04.003
  • [7] Vural, A., Corumluoglu, O., Asri, I. (2016). Exploring Gördes Zeolite Sites by Feature Oriented Principle Component Analysis of LANDSAT Images. Caspian Journal of Environmental Sciences. 14(4): 285-298.
  • [8] Amri, K., Rabai, G., Benbakhti, I.M., Khennouche, N. (2017). Mapping geology in Djelfa District (Saharan Atlas, Algeria), using Landsat 7 ETM+ data: an alternative method to discern lithology and structural elements. Arabian Journal of Geosciences. 10. doi:10.1007/s12517-017-2883-6.
  • [9] Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S., Righini, G. (2012). Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore depositsin Western Africa. Arabian Journal of Geosciences. doi:10.1007/s12517-012-0725-0
  • [10] Ramadan, T.M., Kontny, A. (2004). Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District area, SE Desert, Egypt. Journal of African Earth Sciences. 40: 89-99.
  • [11] Al-Rawashdeh, S., Saleh, B., Hamzah, M. (2006). The Use of Remote Sensing Technology in Geological Investigation and Mineral Detection in El Azraq-Jordan. Cybergeo: European Journal of Geography, Systèmes, Modélisation, Géostatistiques. 358: 1-21.
  • [12] Dogan, H. (2009). Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing. Journal of Earth System Science. 118: 701-710. doi:10.1007/s12040-009-0059-9.
  • [13] Shalaby, M.H., Bishta, A.Z., Roz, M.E., Zalaky, M.A. (2010). Integration of geologic and remote sensing studies for the discovery of uranium mineralization in some granite plutons, Eastern Desert, Egypt. Journal of King Abdulaziz University, Earth Sciences. 21: 1–25.
  • [14] Pour, A.B., Hashim, M. (2015). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, southeastern Islamic Republic of Iran. Journal of Taibah University for Science. 9: 155-166.
  • [15] El Atillah, A., El Morjani, Z., Souhassou, M. (2019). Use of the Sentinel-2A Multispectral Image for Litho-Structural and Alteration Mapping in Al Glo’a Map Sheet (1/50,000) (Bou Azzer–El Graara Inlier, Central Anti-Atlas, Morocco) Artificial Satellites. 54(3): 73-96. doi:10.2478/arsa-2019-0007.
  • [16] Aisanov, Y.B., Egorov, A.I. (1978). Geological structure and main features of mineralization of the Paleozoic formations of the Kuldzhuktau mountains. - Tashkent: Fan, 120 p.
  • [17] Mirkamalov, R.Kh., Chirikin, V.V., Divaev, F.K. (2019). Geodynamic reconstructions of the orogenic belt of the Western Tien Shan and forecasting of endogenous deposits in the basement rocks (guidelines). T.: SE Institute of Mineral Resources - 162 p.
  • [18] Shayakubov, T.S., Dalimov, T.N. (1998). Geology and Minerals of the Republic of Uzbekistan, Tashkent University, Tashkent. 724 pp.
  • [19] Biske, Y.S. (1996). Paleozoic structure and history of the Southern Tien Shan. - SPb., 192 p.
  • [20] Burtman, V.S. (2006). Tien Shan and High Asia Tien Shan and High Asia Tectonics and geodynamics in the Palaeozoic. Moscow. 214p.
  • [21] Konopelko, D.L. (2020). Paleozoic granitoid magmatism of the western Tien Shan. - SPb., 196 p.
  • [22] Bukharin, A.K., Maslennikova, I.A., Pyatkov, A.K. (1985). Pre-Mesozoic structural-formational zones of Western Uzbekistan. - Tashkent: Fan, 152 p.
  • [23] Khamrabaev, I.Kh. (1958). Magmatism and postmagmatic processes in Western Uzbekistan. Academy of Sciences of the Uzbek SSR, Tashkent.
  • [24] Khamrabaev, I.Kh. (1969). Petrological and geochemical criteria for ore content of magmatic complexes (on the example of Uzbeki-stan) // Tashkent: Fan. 210 p.
  • [25] Garkovets, V.G., Mushkin, I.V., Titova, A.P. et al. (1979). The main features of metallogeny in Uzbekistan. - Tashkent: Fan, 272 p.
  • [26] NASA. (1999). “Landsat 7 Science Data User's Handbook.” http://ltpwww.gsfc.nasa.gov/IAS/ handbook/handbook_toc.html.
  • [27] USGS. (2016). LANDSAT 8 (L8) Data Users Handbook. Department of the Interior US Geological Survey, LSDS-1574 Version 2.0, page:98.
  • [28] Achek, H., Aidouni, N. (2014). Essai de cartographie géologique par la télédétection optique de la région Hank (Sud-Ouest Algéri-en).
  • [29] Goipov, A.B., Akhmadov, Sh.I., Movlanov, J.J. (2020a). Study of mineralized zones of the Bukantau mountains using satellite images in the short-wave infrared range. Mining Journal of Kazakhstan. 8: 10-14.
  • [30] Goipov, A.B., Khasanov, N.R., Akhmadov, Sh.I. (2020b). Study of the mineralized zones of the Bukantau mountains on space images in the short-wave infrared range. Journal of Critical Reviews. 7(6): 2070-

New achievements of the remote sensing at the stage of geological exploration research: from satellite images to the determination of the ore body

Year 2023, Volume: 2 Issue: 1, 27 - 36, 30.03.2023

Abstract

As a result of work using the ratio of different bands and combinations of Landsat 7 and Landsat 8 multispectral satellite images, a new combination was created, which made it possible to map mineralization zones for known deposits and identified new potentially promising mineralized zones as continuations of ore zones. The results of remote studies are provided as contours of predictive positions, which are identified by spectral anomalies in the SWIR ranges. These anomalies are confirmed by traditional methods of geological research in the field. The samples obtained along the exploration routes showed a high content of gold and associated minerals. By pro-cessing the iron index of multispectral space images, we obtained correspondence to the zones of hydrothermal changes. The ratio of increase in mineralization content is related to the distribution density of spectral halos. With remote sensing methods, field verification work and structural studies were carried out in parallel, as a result of which the impact of Quaternary tectogenesis was established, which led to a change in ore bodies to a lenticular shape

References

  • [1] Golovanov, I.M. (2001). Ore deposits of Uzbekistan. - T.: HIDROINGEO. 660 p.
  • [2] Segal, D. (1982). Theoretical Basis for Differentiation of Ferric-Iron Bearing Minerals, Using Landsat MSS Data. Proceedings of Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort Worth, TX: pp. 949-951.
  • [3] Ducart, D.F., Silva, A.M., Toledo, C.L.B., Assis, L.M. (2016). Mapping iron oxides with Landsat 8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Brazilian Journal of Geology. 46(3): 331-349...
  • [4] Gad, S., Kusky, T. (2006). Lithological Mapping in the Eastern Desert of Egypt, the Barramiya Area, using Landsat Thematic Mapper (TM). Journal of African Earth Sciences. 44: 196-202.
  • [5] Ciampalini, A., Garfagnoli, F., Del Ventisette, C., Moretti, S. (2013). Potential Use of Remote Sensing Techniques for Exploration of Iron Deposits in Western Sahara and Southwest of Algeria. Natural Resources Research. 22. doi:10.1007/s11053-013-9209-5.
  • [6] Salem, SM, El Gammal, EA. (2015). Iron ore prospection East Aswan, Egypt, using remote sensing techniques, Egypt. J. Remote Sensing Space Sci. doi:10.1016/j.ejrs.2015.04.003
  • [7] Vural, A., Corumluoglu, O., Asri, I. (2016). Exploring Gördes Zeolite Sites by Feature Oriented Principle Component Analysis of LANDSAT Images. Caspian Journal of Environmental Sciences. 14(4): 285-298.
  • [8] Amri, K., Rabai, G., Benbakhti, I.M., Khennouche, N. (2017). Mapping geology in Djelfa District (Saharan Atlas, Algeria), using Landsat 7 ETM+ data: an alternative method to discern lithology and structural elements. Arabian Journal of Geosciences. 10. doi:10.1007/s12517-017-2883-6.
  • [9] Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S., Righini, G. (2012). Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore depositsin Western Africa. Arabian Journal of Geosciences. doi:10.1007/s12517-012-0725-0
  • [10] Ramadan, T.M., Kontny, A. (2004). Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District area, SE Desert, Egypt. Journal of African Earth Sciences. 40: 89-99.
  • [11] Al-Rawashdeh, S., Saleh, B., Hamzah, M. (2006). The Use of Remote Sensing Technology in Geological Investigation and Mineral Detection in El Azraq-Jordan. Cybergeo: European Journal of Geography, Systèmes, Modélisation, Géostatistiques. 358: 1-21.
  • [12] Dogan, H. (2009). Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing. Journal of Earth System Science. 118: 701-710. doi:10.1007/s12040-009-0059-9.
  • [13] Shalaby, M.H., Bishta, A.Z., Roz, M.E., Zalaky, M.A. (2010). Integration of geologic and remote sensing studies for the discovery of uranium mineralization in some granite plutons, Eastern Desert, Egypt. Journal of King Abdulaziz University, Earth Sciences. 21: 1–25.
  • [14] Pour, A.B., Hashim, M. (2015). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, southeastern Islamic Republic of Iran. Journal of Taibah University for Science. 9: 155-166.
  • [15] El Atillah, A., El Morjani, Z., Souhassou, M. (2019). Use of the Sentinel-2A Multispectral Image for Litho-Structural and Alteration Mapping in Al Glo’a Map Sheet (1/50,000) (Bou Azzer–El Graara Inlier, Central Anti-Atlas, Morocco) Artificial Satellites. 54(3): 73-96. doi:10.2478/arsa-2019-0007.
  • [16] Aisanov, Y.B., Egorov, A.I. (1978). Geological structure and main features of mineralization of the Paleozoic formations of the Kuldzhuktau mountains. - Tashkent: Fan, 120 p.
  • [17] Mirkamalov, R.Kh., Chirikin, V.V., Divaev, F.K. (2019). Geodynamic reconstructions of the orogenic belt of the Western Tien Shan and forecasting of endogenous deposits in the basement rocks (guidelines). T.: SE Institute of Mineral Resources - 162 p.
  • [18] Shayakubov, T.S., Dalimov, T.N. (1998). Geology and Minerals of the Republic of Uzbekistan, Tashkent University, Tashkent. 724 pp.
  • [19] Biske, Y.S. (1996). Paleozoic structure and history of the Southern Tien Shan. - SPb., 192 p.
  • [20] Burtman, V.S. (2006). Tien Shan and High Asia Tien Shan and High Asia Tectonics and geodynamics in the Palaeozoic. Moscow. 214p.
  • [21] Konopelko, D.L. (2020). Paleozoic granitoid magmatism of the western Tien Shan. - SPb., 196 p.
  • [22] Bukharin, A.K., Maslennikova, I.A., Pyatkov, A.K. (1985). Pre-Mesozoic structural-formational zones of Western Uzbekistan. - Tashkent: Fan, 152 p.
  • [23] Khamrabaev, I.Kh. (1958). Magmatism and postmagmatic processes in Western Uzbekistan. Academy of Sciences of the Uzbek SSR, Tashkent.
  • [24] Khamrabaev, I.Kh. (1969). Petrological and geochemical criteria for ore content of magmatic complexes (on the example of Uzbeki-stan) // Tashkent: Fan. 210 p.
  • [25] Garkovets, V.G., Mushkin, I.V., Titova, A.P. et al. (1979). The main features of metallogeny in Uzbekistan. - Tashkent: Fan, 272 p.
  • [26] NASA. (1999). “Landsat 7 Science Data User's Handbook.” http://ltpwww.gsfc.nasa.gov/IAS/ handbook/handbook_toc.html.
  • [27] USGS. (2016). LANDSAT 8 (L8) Data Users Handbook. Department of the Interior US Geological Survey, LSDS-1574 Version 2.0, page:98.
  • [28] Achek, H., Aidouni, N. (2014). Essai de cartographie géologique par la télédétection optique de la région Hank (Sud-Ouest Algéri-en).
  • [29] Goipov, A.B., Akhmadov, Sh.I., Movlanov, J.J. (2020a). Study of mineralized zones of the Bukantau mountains using satellite images in the short-wave infrared range. Mining Journal of Kazakhstan. 8: 10-14.
  • [30] Goipov, A.B., Khasanov, N.R., Akhmadov, Sh.I. (2020b). Study of the mineralized zones of the Bukantau mountains on space images in the short-wave infrared range. Journal of Critical Reviews. 7(6): 2070-
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Akram Goipov 0000-0003-1720-2998

Mehmet Ali Akgül 0000-0002-5517-9576

Suphi Ural 0000-0003-4865-011X

Shokir Akhmadov 0000-0002-8983-9763

Publication Date March 30, 2023
Published in Issue Year 2023 Volume: 2 Issue: 1

Cite

APA Goipov, A., Akgül, M. A., Ural, S., Akhmadov, S. (2023). New achievements of the remote sensing at the stage of geological exploration research: from satellite images to the determination of the ore body. Cukurova University Journal of Natural and Applied Sciences, 2(1), 27-36.
AMA Goipov A, Akgül MA, Ural S, Akhmadov S. New achievements of the remote sensing at the stage of geological exploration research: from satellite images to the determination of the ore body. Cukurova University Journal of Natural and Applied Sciences. March 2023;2(1):27-36.
Chicago Goipov, Akram, Mehmet Ali Akgül, Suphi Ural, and Shokir Akhmadov. “New Achievements of the Remote Sensing at the Stage of Geological Exploration Research: From Satellite Images to the Determination of the Ore Body”. Cukurova University Journal of Natural and Applied Sciences 2, no. 1 (March 2023): 27-36.
EndNote Goipov A, Akgül MA, Ural S, Akhmadov S (March 1, 2023) New achievements of the remote sensing at the stage of geological exploration research: from satellite images to the determination of the ore body. Cukurova University Journal of Natural and Applied Sciences 2 1 27–36.
IEEE A. Goipov, M. A. Akgül, S. Ural, and S. Akhmadov, “New achievements of the remote sensing at the stage of geological exploration research: from satellite images to the determination of the ore body”, Cukurova University Journal of Natural and Applied Sciences, vol. 2, no. 1, pp. 27–36, 2023.
ISNAD Goipov, Akram et al. “New Achievements of the Remote Sensing at the Stage of Geological Exploration Research: From Satellite Images to the Determination of the Ore Body”. Cukurova University Journal of Natural and Applied Sciences 2/1 (March 2023), 27-36.
JAMA Goipov A, Akgül MA, Ural S, Akhmadov S. New achievements of the remote sensing at the stage of geological exploration research: from satellite images to the determination of the ore body. Cukurova University Journal of Natural and Applied Sciences. 2023;2:27–36.
MLA Goipov, Akram et al. “New Achievements of the Remote Sensing at the Stage of Geological Exploration Research: From Satellite Images to the Determination of the Ore Body”. Cukurova University Journal of Natural and Applied Sciences, vol. 2, no. 1, 2023, pp. 27-36.
Vancouver Goipov A, Akgül MA, Ural S, Akhmadov S. New achievements of the remote sensing at the stage of geological exploration research: from satellite images to the determination of the ore body. Cukurova University Journal of Natural and Applied Sciences. 2023;2(1):27-36.