Research Article
BibTex RIS Cite
Year 2024, Volume: 3 Issue: 1, 11 - 18

Abstract

Project Number

FYL-2020-12800

References

  • [1] Merck Coumarin., n.d. Coumarin msds. Coumarin MSDS - 822316 - Merck. https://www.merckmillipore.com/TR/tr/product/msds/MDA_CHEM-822316. [accessed November 28, 2023].
  • [2] Born, S.L., Api, A.M., Ford, R.A., Lefever, F.R., Hawkins, D.R., (2003). Comparative metabolism and kinetics of couma-rin in mice and rats. Food and Chemical Toxicology. 41(2): 247–58. doi: 10.1016/S0278-6915(02)00227-2.
  • [3] Vassallo, J.D., Hicks, S.M., Daston, G.P., Lehman-McKeeman, L.D., (2004). Metabolic Detoxification Determines Species Differences in Coumarin-Induced Hepatotoxicity. Toxicological Sciences. 80(2): 249–57. doi: 10.1093/TOXSCI/KFH162.
  • [4] Kishino, Y., Hasegawa, T., Arakawa, S., Shibaya, Y., Yamoto, T., Mori, K., (2019). Effect of the metabolic capacity in rat liver S9 on the positive results of in vitro micronucleus tests. The Journal of Toxicological Sciences. 44(3): 145–53. doi: 10.2131/JTS.44.145.
  • [5] Kanode, R., Chandra, S., Sharma, S., (2017). Application of bacterial reverse mutation assay for detection of non-genotoxic carcinogens. Toxicology Mechanisms and Methods. 27(5): 376–81. doi: 10.1080/15376516.2017.1300616.
  • [6] Dhawan, S., Awolade, P., Kisten, P., Cele, N., Pillay, A.S., Saha, S.T., et al., (2020). Synthesis, Cytotoxicity and Antimicro-bial Evaluation of New Coumarin-Tagged β-Lactam Triazole Hybrid. Chemistry & Biodiversity. 17(1). doi: 10.1002/CBDV.201900462.
  • [7] Maleki, E.H., Bahrami, A.R., Sadeghian, H., Matin, M.M., (2020). Discovering the structure–activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells. Toxicology in Vitro. 63: 104745. doi: 10.1016/J.TIV.2019.104745.
  • [8] Ahmed, E.Y., Abdel Latif, N.A., El-Mansy, M.F., Elserwy, W.S., Abdelhafez, O.M., (2020). VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents. Bioorganic & Medicinal Chemistry. 28(5). doi: 10.1016/J.BMC.2020.115328.
  • [9] Verhoef, T.I., Redekop, W.K., Daly, A.K., Van Schie, R.M.F., De Boer, A., Maitland-Van Der Zee, A.H., (2014). Phar-macogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon. British Journal of Clinical Pharmacology. 77(4): 626. doi: 10.1111/BCP.12220.
  • [10] www.drugs.com (What are Coumarins)., n.d. List of Coumarins and indandiones - Drugs.com. https://www.drugs.com/drug-class/coumarins-and-indandiones.html. [accessed January 22, 2024].
  • [11] Erşatır, M., Giray, E.S., (2018). Fen ve Mühendislik Bilimleri Dergisi Yıl: 35–41.
  • [12] Hartough, H.D. (Howard D., Hochgesang, F.P. (Frank P.)., Blicke, F.F. (Frederick F., (1952). Thiophene and its deriva-tives: 533.
  • [13] Eicher, T., Hauptmann, S., Speicher, A., (2003). The Chemistry of Heterocycles. The Chemistry of Heterocycles. doi: 10.1002/352760183X.
  • [14] Wilhelm, E.A., Jesse, C.R., Bortolatto, C.F., Nogueira, C.W., Savegnago, L., (2009). Anticonvulsant and antioxidant effects of 3-alkynyl selenophene in 21-day-old rats on pilocarpine model of seizures. Brain Research Bulletin. 79(5): 281–7. doi: 10.1016/J.BRAINRESBULL.2009.03.006.
  • [15] Grange, R.L., Ziogas, J., North, A.J., Angus, J.A., Schiesser, C.H., (2008). Selenosartans: novel selenophene analogues of milfasartan and eprosartan. Bioorganic & Medicinal Chemistry Letters. 18(3): 1241–4. doi: 10.1016/J.BMCL.2007.11.136.
  • [16] Juang, S.H., Lung, C.C., Hsu, P.C., Hsu, K.S., Li, Y.C., Hong, P.C., et al., (2007). D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. Molecular Cancer Therapeutics. 6(1): 193–202. doi: 10.1158/1535-7163.MCT-06-0482.
  • [17] Merck-Selenophene., n.d. Selenophene 97 288-05-1. https://www.sigmaaldrich.com/TR/en/product/aldrich/367141. [accessed January 22, 2024].
  • [18] Mhetre, A.B., Lee, H., Yang, H., Lee, K., Nam, D.H., Lim, D., (2017). Synthesis and anticancer activity of benzoseleno-phene and heteroaromatic derivatives of 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI). Organic & Biomolecular Chemistry. 15(5): 1198–208. doi: 10.1039/C6OB02729F.
  • [19] Adly, M.E., Gedawy, E.M., El-Malah, A.A., El-Telbany, F.A., (2019). Synthesis and Anticancer Activity of Certain Sele-nophene Derivatives. Russian Journal of Organic Chemistry. 55(8): 1189–96. doi: 10.1134/S1070428019080189/METRICS.
  • [20] Schumacher, R.F., Rosário, A.R., Souza, A.C.G., Acker, C.I., Nogueira, C.W., Zeni, G., (2011). The potential antioxi-dant activity of 2,3-dihydroselenophene, a prototype drug of 4-aryl-2,3-dihydroselenophenes. Bioorganic & Medicinal Chem-istry. 19(4): 1418–25. doi: 10.1016/J.BMC.2011.01.005.
  • [21] Singh, V.P., Yan, J., Poon, J.F., Gates, P.J., Butcher, R.J., Engman, L., (2017). Chain-Breaking Phenolic 2,3-Dihydrobenzo[b]selenophene Antioxidants: Proximity Effects and Regeneration Studies. Chemistry – A European Journal. 23(60): 15080–8. doi: 10.1002/CHEM.201702350.
  • [22] Tavadyan, L.A., Manukyan, Z.H., Harutyunyan, L.H., Musayelyan, M. V., Sahakyan, A.D., Tonikyan, H.G., (2017). Antioxidant Properties of Selenophene, Thiophene and Their Aminocarbonitrile Derivatives. Antioxidants. 6(2). doi: 10.3390/ANTIOX6020022.
  • [23] Luo, J., Hu, Z., Xiao, Y., Yang, T., Dong, C., Huang, J., et al., (2017). Rational design and optimization of selenophenes with basic side chains as novel potent selective estrogen receptor modulators (SERMs) for breast cancer therapy. MedChem-Comm. 8(7): 1485–97. doi: 10.1039/C7MD00163K.
  • [24] Zhang, S., Wang, Z., Hu, Z., Li, C., Tang, C., Carlson, K.E., et al., (2017). Selenophenes: Introducing a New Element into the Core of Non-Steroidal Estrogen Receptor Ligands. ChemMedChem. 12(3): 235. doi: 10.1002/CMDC.201600593.
  • [25] Juang, S.H., Lung, C.C., Hsu, P.C., Hsu, K.S., Li, Y.C., Hong, P.C., et al., (2007). D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. Molecular Cancer Therapeutics. 6(1): 193–202. doi: 10.1158/1535-7163.MCT-06-0482.
  • [26] Shiah, H.S., Lee, W.S., Juang, S.H., Hong, P.C., Lung, C.C., Chang, C.J., et al., (2007). Mitochondria-mediated and p53-associated apoptosis induced in human cancer cells by a novel selenophene derivative, D-501036. Biochemical Pharma-cology. 73(5): 610–9. doi: 10.1016/J.BCP.2006.10.019.
  • [27] Yang, Y.N., Chou, K. ming., Pan, W.Y., Chen, Y. wen., Tsou, T.C., Yeh, S.C., et al., (2011). Enhancement of non-homologous end joining DNA repair capacity confers cancer cells resistance to the novel selenophene compound, D-501036. Cancer Letters. 309(1): 110–8. doi: 10.1016/J.CANLET.2011.05.023.
  • [28] Csuk, R., Siewert, B., Wiemann, J., (2013). A bioassay-driven discovery of an unexpected selenophene and its cytotoxicity. Bioorganic & Medicinal Chemistry Letters. 23(12): 3542–6. doi: 10.1016/J.BMCL.2013.04.036.
  • [29] Wiles, J.A., Phadke, A.S., Bradbury, B.J., Pucci, M.J., Thanassi, J.A., Deshpande, M., (2011). Selenophene-containing inhibitors of type IIA bacterial topoisomerases. Journal of Medicinal Chemistry. 54(9): 3418–25. doi: 10.1021/JM2002124/SUPPL_FILE/JM2002124_SI_001.PDF.
  • [30] Kim, Y.J., Lee, D.H., Choi, Y.S., Jeong, J.H., Kwon, S.H., (2019). Benzo[b]tellurophenes as a Potential Histone H3 Ly-sine 9 Demethylase (KDM4) Inhibitor. International Journal of Molecular Sciences. 20(23). doi: 10.3390/IJMS20235908.
  • [31] Çetin, M., Deniz, G., Polat, Ü., Yalçin, A., (2002). Broylerlerde inorganik ve organik selenyum ilavesinin biyokimyasal kan parametreleri üzerine etkisi. Vet. Med. 21: 59–63.
  • [32] Arslan, M., Timocin, T., Ila, H.B., (2017). In vitro potential cytogenetic and oxidative stress effects of roxithromycin. Drug and Chemical Toxicology. 40(4): 463–9. doi: 10.1080/01480545.2016.1264410.
  • [33] Ord, M.J., Herbert, A., Mattocks, A.R., (1985). The ability of bifunctional and monofunctional pyrrole compounds to induce sister-chromatid exchange (SCE) in human lymphocytes and mutations in Salmonella typhimurium. Mutation Re-search. 149(3): 485–93. doi: 10.1016/0027-5107(85)90167-8.
  • [34] Skoutelis, C., Antonopoulou, M., Konstantinou, I., Vlastos, D., Papadaki, M., (2017). Photodegradation of 2-chloropyridine in aqueous solution: Reaction pathways and genotoxicity of intermediate products. Journal of Hazardous Mate-rials. 321: 753–63. doi: 10.1016/J.JHAZMAT.2016.09.058.
  • [35] Limoli, C.L., Giedzinski, E., (2003). Induction of chromosomal instability by chronic oxidative stress. Neoplasia (New York, N.Y.). 5(4): 339–46. doi: 10.1016/S1476-5586(03)80027-1. [36] Cooke, M.S., Evans, M.D., Dizdaroglu, M., Lunec, J., (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology. 17(10): 1195–214. doi: 10.1096/FJ.02-0752REV.
  • [37] Barzilai, A., Yamamoto, K.I., (2004). DNA damage responses to oxidative stress. DNA Repair. 3(8–9): 1109–15. doi: 10.1016/j.dnarep.2004.03.002.
  • [38] Salmon, T.B., Evert, B.A., Song, B., Doetsch, P.W., (2004). Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Research. 32(12): 3712–23. doi: 10.1093/NAR/GKH696.
  • [39] Gonzalez-Hunt, C.P., Wadhwa, M., Sanders, L.H., (2018). DNA damage by oxidative stress: Measurement strategies for two genomes. Current Opinion in Toxicology. 7. doi: 10.1016/j.cotox.2017.11.001.
  • [40] Walczak, C.E., Heald, R., (2008). Mechanisms of mitotic spindle assembly and function. International Review of Cytolo-gy. 265: 111–58. doi: 10.1016/S0074-7696(07)65003-7.
  • [41] Przewloka, M.R., Glover, D.M., (2009). The kinetochore and the centromere: a working long distance relationship. An-nual Review of Genetics. 43: 439–65. doi: 10.1146/ANNUREV-GENET-102108-134310.
  • [42] Gabel, C.A., Li, Z., DeMarco, A.G., Zhang, Z., Yang, J., Hall, M.C., et al., (2022). Molecular architecture of the augmin complex. Nature Communications 2022 13:1. 13(1): 1–13. doi: 10.1038/s41467-022-33227-7.
  • [43] Erşatır, M., Yıldırım, M., Giray, E.S., Yalın, S., (2020). Synthesis and antiproliferative evaluation of novel biheterocycles based on coumarin and 2-aminoselenophene-3-carbonitrile unit. Monatshefte Fur Chemie. 151(4): 625–36. doi: 10.1007/S00706-020-02573-X/TABLES/7.
  • [44] Budhiraja, A., Kadian, K., Kaur, M., Aggarwal, V., Garg, A., Sapra, S., et al., (2012). Synthesis and biological evaluation of naphthalene, furan and pyrrole based chalcones as cytotoxic and antimicrobial agents. Medicinal Chemistry Research. 21: 2133–40. doi: 10.1007/s00044-011-9733-y.

In vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound

Year 2024, Volume: 3 Issue: 1, 11 - 18

Abstract

This study was carried out to reveal the in vitro cytogenotoxic effect of 2-amino-5-(6-bromo-2-oxo-2H-chromen-3-yl) selenophene-3-carbonitrile (6-BrCoumSel or CoumSel), a newly synthesized coumarin-selenophene hybrid compound. Coumarin (2H-chromen-2-one), one of the main components of the test substance hybrid molecule (CoumSel), is an aromatic organic chemical compound with the formula C9H6O2. Pharmacologically, coumarin belongs to the flavonoid group of chemicals. The other component, selenophene, has the formula C4H4Se and is an unsaturated organic compound containing a five-membered ring containing selenium in its structure. It is a colorless liquid and is one of the most common selenium heterocycles. It was found that in human lymphocytes cultured in vitro, the hybrid CoumSel compound increased the frequency of chromosome abnormalities (CA) and micronuclei (MN), especially at high concentrations, compared to the untreated group (0 µg/ml). The potential of CoumSel as an antiproliferative drug with its current properties should not be ignored.

Project Number

FYL-2020-12800

References

  • [1] Merck Coumarin., n.d. Coumarin msds. Coumarin MSDS - 822316 - Merck. https://www.merckmillipore.com/TR/tr/product/msds/MDA_CHEM-822316. [accessed November 28, 2023].
  • [2] Born, S.L., Api, A.M., Ford, R.A., Lefever, F.R., Hawkins, D.R., (2003). Comparative metabolism and kinetics of couma-rin in mice and rats. Food and Chemical Toxicology. 41(2): 247–58. doi: 10.1016/S0278-6915(02)00227-2.
  • [3] Vassallo, J.D., Hicks, S.M., Daston, G.P., Lehman-McKeeman, L.D., (2004). Metabolic Detoxification Determines Species Differences in Coumarin-Induced Hepatotoxicity. Toxicological Sciences. 80(2): 249–57. doi: 10.1093/TOXSCI/KFH162.
  • [4] Kishino, Y., Hasegawa, T., Arakawa, S., Shibaya, Y., Yamoto, T., Mori, K., (2019). Effect of the metabolic capacity in rat liver S9 on the positive results of in vitro micronucleus tests. The Journal of Toxicological Sciences. 44(3): 145–53. doi: 10.2131/JTS.44.145.
  • [5] Kanode, R., Chandra, S., Sharma, S., (2017). Application of bacterial reverse mutation assay for detection of non-genotoxic carcinogens. Toxicology Mechanisms and Methods. 27(5): 376–81. doi: 10.1080/15376516.2017.1300616.
  • [6] Dhawan, S., Awolade, P., Kisten, P., Cele, N., Pillay, A.S., Saha, S.T., et al., (2020). Synthesis, Cytotoxicity and Antimicro-bial Evaluation of New Coumarin-Tagged β-Lactam Triazole Hybrid. Chemistry & Biodiversity. 17(1). doi: 10.1002/CBDV.201900462.
  • [7] Maleki, E.H., Bahrami, A.R., Sadeghian, H., Matin, M.M., (2020). Discovering the structure–activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells. Toxicology in Vitro. 63: 104745. doi: 10.1016/J.TIV.2019.104745.
  • [8] Ahmed, E.Y., Abdel Latif, N.A., El-Mansy, M.F., Elserwy, W.S., Abdelhafez, O.M., (2020). VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents. Bioorganic & Medicinal Chemistry. 28(5). doi: 10.1016/J.BMC.2020.115328.
  • [9] Verhoef, T.I., Redekop, W.K., Daly, A.K., Van Schie, R.M.F., De Boer, A., Maitland-Van Der Zee, A.H., (2014). Phar-macogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon. British Journal of Clinical Pharmacology. 77(4): 626. doi: 10.1111/BCP.12220.
  • [10] www.drugs.com (What are Coumarins)., n.d. List of Coumarins and indandiones - Drugs.com. https://www.drugs.com/drug-class/coumarins-and-indandiones.html. [accessed January 22, 2024].
  • [11] Erşatır, M., Giray, E.S., (2018). Fen ve Mühendislik Bilimleri Dergisi Yıl: 35–41.
  • [12] Hartough, H.D. (Howard D., Hochgesang, F.P. (Frank P.)., Blicke, F.F. (Frederick F., (1952). Thiophene and its deriva-tives: 533.
  • [13] Eicher, T., Hauptmann, S., Speicher, A., (2003). The Chemistry of Heterocycles. The Chemistry of Heterocycles. doi: 10.1002/352760183X.
  • [14] Wilhelm, E.A., Jesse, C.R., Bortolatto, C.F., Nogueira, C.W., Savegnago, L., (2009). Anticonvulsant and antioxidant effects of 3-alkynyl selenophene in 21-day-old rats on pilocarpine model of seizures. Brain Research Bulletin. 79(5): 281–7. doi: 10.1016/J.BRAINRESBULL.2009.03.006.
  • [15] Grange, R.L., Ziogas, J., North, A.J., Angus, J.A., Schiesser, C.H., (2008). Selenosartans: novel selenophene analogues of milfasartan and eprosartan. Bioorganic & Medicinal Chemistry Letters. 18(3): 1241–4. doi: 10.1016/J.BMCL.2007.11.136.
  • [16] Juang, S.H., Lung, C.C., Hsu, P.C., Hsu, K.S., Li, Y.C., Hong, P.C., et al., (2007). D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. Molecular Cancer Therapeutics. 6(1): 193–202. doi: 10.1158/1535-7163.MCT-06-0482.
  • [17] Merck-Selenophene., n.d. Selenophene 97 288-05-1. https://www.sigmaaldrich.com/TR/en/product/aldrich/367141. [accessed January 22, 2024].
  • [18] Mhetre, A.B., Lee, H., Yang, H., Lee, K., Nam, D.H., Lim, D., (2017). Synthesis and anticancer activity of benzoseleno-phene and heteroaromatic derivatives of 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI). Organic & Biomolecular Chemistry. 15(5): 1198–208. doi: 10.1039/C6OB02729F.
  • [19] Adly, M.E., Gedawy, E.M., El-Malah, A.A., El-Telbany, F.A., (2019). Synthesis and Anticancer Activity of Certain Sele-nophene Derivatives. Russian Journal of Organic Chemistry. 55(8): 1189–96. doi: 10.1134/S1070428019080189/METRICS.
  • [20] Schumacher, R.F., Rosário, A.R., Souza, A.C.G., Acker, C.I., Nogueira, C.W., Zeni, G., (2011). The potential antioxi-dant activity of 2,3-dihydroselenophene, a prototype drug of 4-aryl-2,3-dihydroselenophenes. Bioorganic & Medicinal Chem-istry. 19(4): 1418–25. doi: 10.1016/J.BMC.2011.01.005.
  • [21] Singh, V.P., Yan, J., Poon, J.F., Gates, P.J., Butcher, R.J., Engman, L., (2017). Chain-Breaking Phenolic 2,3-Dihydrobenzo[b]selenophene Antioxidants: Proximity Effects and Regeneration Studies. Chemistry – A European Journal. 23(60): 15080–8. doi: 10.1002/CHEM.201702350.
  • [22] Tavadyan, L.A., Manukyan, Z.H., Harutyunyan, L.H., Musayelyan, M. V., Sahakyan, A.D., Tonikyan, H.G., (2017). Antioxidant Properties of Selenophene, Thiophene and Their Aminocarbonitrile Derivatives. Antioxidants. 6(2). doi: 10.3390/ANTIOX6020022.
  • [23] Luo, J., Hu, Z., Xiao, Y., Yang, T., Dong, C., Huang, J., et al., (2017). Rational design and optimization of selenophenes with basic side chains as novel potent selective estrogen receptor modulators (SERMs) for breast cancer therapy. MedChem-Comm. 8(7): 1485–97. doi: 10.1039/C7MD00163K.
  • [24] Zhang, S., Wang, Z., Hu, Z., Li, C., Tang, C., Carlson, K.E., et al., (2017). Selenophenes: Introducing a New Element into the Core of Non-Steroidal Estrogen Receptor Ligands. ChemMedChem. 12(3): 235. doi: 10.1002/CMDC.201600593.
  • [25] Juang, S.H., Lung, C.C., Hsu, P.C., Hsu, K.S., Li, Y.C., Hong, P.C., et al., (2007). D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. Molecular Cancer Therapeutics. 6(1): 193–202. doi: 10.1158/1535-7163.MCT-06-0482.
  • [26] Shiah, H.S., Lee, W.S., Juang, S.H., Hong, P.C., Lung, C.C., Chang, C.J., et al., (2007). Mitochondria-mediated and p53-associated apoptosis induced in human cancer cells by a novel selenophene derivative, D-501036. Biochemical Pharma-cology. 73(5): 610–9. doi: 10.1016/J.BCP.2006.10.019.
  • [27] Yang, Y.N., Chou, K. ming., Pan, W.Y., Chen, Y. wen., Tsou, T.C., Yeh, S.C., et al., (2011). Enhancement of non-homologous end joining DNA repair capacity confers cancer cells resistance to the novel selenophene compound, D-501036. Cancer Letters. 309(1): 110–8. doi: 10.1016/J.CANLET.2011.05.023.
  • [28] Csuk, R., Siewert, B., Wiemann, J., (2013). A bioassay-driven discovery of an unexpected selenophene and its cytotoxicity. Bioorganic & Medicinal Chemistry Letters. 23(12): 3542–6. doi: 10.1016/J.BMCL.2013.04.036.
  • [29] Wiles, J.A., Phadke, A.S., Bradbury, B.J., Pucci, M.J., Thanassi, J.A., Deshpande, M., (2011). Selenophene-containing inhibitors of type IIA bacterial topoisomerases. Journal of Medicinal Chemistry. 54(9): 3418–25. doi: 10.1021/JM2002124/SUPPL_FILE/JM2002124_SI_001.PDF.
  • [30] Kim, Y.J., Lee, D.H., Choi, Y.S., Jeong, J.H., Kwon, S.H., (2019). Benzo[b]tellurophenes as a Potential Histone H3 Ly-sine 9 Demethylase (KDM4) Inhibitor. International Journal of Molecular Sciences. 20(23). doi: 10.3390/IJMS20235908.
  • [31] Çetin, M., Deniz, G., Polat, Ü., Yalçin, A., (2002). Broylerlerde inorganik ve organik selenyum ilavesinin biyokimyasal kan parametreleri üzerine etkisi. Vet. Med. 21: 59–63.
  • [32] Arslan, M., Timocin, T., Ila, H.B., (2017). In vitro potential cytogenetic and oxidative stress effects of roxithromycin. Drug and Chemical Toxicology. 40(4): 463–9. doi: 10.1080/01480545.2016.1264410.
  • [33] Ord, M.J., Herbert, A., Mattocks, A.R., (1985). The ability of bifunctional and monofunctional pyrrole compounds to induce sister-chromatid exchange (SCE) in human lymphocytes and mutations in Salmonella typhimurium. Mutation Re-search. 149(3): 485–93. doi: 10.1016/0027-5107(85)90167-8.
  • [34] Skoutelis, C., Antonopoulou, M., Konstantinou, I., Vlastos, D., Papadaki, M., (2017). Photodegradation of 2-chloropyridine in aqueous solution: Reaction pathways and genotoxicity of intermediate products. Journal of Hazardous Mate-rials. 321: 753–63. doi: 10.1016/J.JHAZMAT.2016.09.058.
  • [35] Limoli, C.L., Giedzinski, E., (2003). Induction of chromosomal instability by chronic oxidative stress. Neoplasia (New York, N.Y.). 5(4): 339–46. doi: 10.1016/S1476-5586(03)80027-1. [36] Cooke, M.S., Evans, M.D., Dizdaroglu, M., Lunec, J., (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology. 17(10): 1195–214. doi: 10.1096/FJ.02-0752REV.
  • [37] Barzilai, A., Yamamoto, K.I., (2004). DNA damage responses to oxidative stress. DNA Repair. 3(8–9): 1109–15. doi: 10.1016/j.dnarep.2004.03.002.
  • [38] Salmon, T.B., Evert, B.A., Song, B., Doetsch, P.W., (2004). Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Research. 32(12): 3712–23. doi: 10.1093/NAR/GKH696.
  • [39] Gonzalez-Hunt, C.P., Wadhwa, M., Sanders, L.H., (2018). DNA damage by oxidative stress: Measurement strategies for two genomes. Current Opinion in Toxicology. 7. doi: 10.1016/j.cotox.2017.11.001.
  • [40] Walczak, C.E., Heald, R., (2008). Mechanisms of mitotic spindle assembly and function. International Review of Cytolo-gy. 265: 111–58. doi: 10.1016/S0074-7696(07)65003-7.
  • [41] Przewloka, M.R., Glover, D.M., (2009). The kinetochore and the centromere: a working long distance relationship. An-nual Review of Genetics. 43: 439–65. doi: 10.1146/ANNUREV-GENET-102108-134310.
  • [42] Gabel, C.A., Li, Z., DeMarco, A.G., Zhang, Z., Yang, J., Hall, M.C., et al., (2022). Molecular architecture of the augmin complex. Nature Communications 2022 13:1. 13(1): 1–13. doi: 10.1038/s41467-022-33227-7.
  • [43] Erşatır, M., Yıldırım, M., Giray, E.S., Yalın, S., (2020). Synthesis and antiproliferative evaluation of novel biheterocycles based on coumarin and 2-aminoselenophene-3-carbonitrile unit. Monatshefte Fur Chemie. 151(4): 625–36. doi: 10.1007/S00706-020-02573-X/TABLES/7.
  • [44] Budhiraja, A., Kadian, K., Kaur, M., Aggarwal, V., Garg, A., Sapra, S., et al., (2012). Synthesis and biological evaluation of naphthalene, furan and pyrrole based chalcones as cytotoxic and antimicrobial agents. Medicinal Chemistry Research. 21: 2133–40. doi: 10.1007/s00044-011-9733-y.
There are 43 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death
Journal Section Research Articles
Authors

Hasan İla 0000-0002-3221-8587

Project Number FYL-2020-12800
Publication Date
Submission Date February 14, 2024
Acceptance Date March 8, 2024
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

APA İla, H. (n.d.). In vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound. Cukurova University Journal of Natural and Applied Sciences, 3(1), 11-18.
AMA İla H. In vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound. Cukurova University Journal of Natural and Applied Sciences. 3(1):11-18.
Chicago İla, Hasan. “In Vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound”. Cukurova University Journal of Natural and Applied Sciences 3, no. 1 n.d.: 11-18.
EndNote İla H In vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound. Cukurova University Journal of Natural and Applied Sciences 3 1 11–18.
IEEE H. İla, “In vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound”, Cukurova University Journal of Natural and Applied Sciences, vol. 3, no. 1, pp. 11–18.
ISNAD İla, Hasan. “In Vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound”. Cukurova University Journal of Natural and Applied Sciences 3/1 (n.d.), 11-18.
JAMA İla H. In vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound. Cukurova University Journal of Natural and Applied Sciences.;3:11–18.
MLA İla, Hasan. “In Vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound”. Cukurova University Journal of Natural and Applied Sciences, vol. 3, no. 1, pp. 11-18.
Vancouver İla H. In vitro Cytogenotoxic Effects of a Coumarin-Selenophene Hybrid Compound. Cukurova University Journal of Natural and Applied Sciences. 3(1):11-8.