Review
BibTex RIS Cite
Year 2024, Volume: 3 Issue: 2, 65 - 78
https://doi.org/10.70395/cunas.1566145

Abstract

References

  • [1] Trajkovska Petkoska, A., Daniloski, D., D'Cunha, N.M., Naumovski, N., Broach, A.T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int; 140:109981.
  • [2] Jin, K., Tang, Y., Liu, J., Wang, J., Ye, C. (2021). Nanofibrillated cellulose as coating agent for food packaging paper. Int J Biol Macromol; 168:331-8.
  • [3] Otto, S., Strenger, M., Maier-Nöth, A., Schmid, M. (2021). Food Packaging and Sustainability – Consumer Perception vs. Correlated Scientific Facts: A Review. J Cleaner Prod; 298:126733.
  • [4] Molina-Besch, K., Wikström, F., Williams, H. (2018). The environmental impact of packaging in food supply chains—does life cycle assessment of food provide the full picture? Int J Life Cycle Assess; 24:37-50.
  • [5] Rodrigues, M.O., Abrantes, N., Goncalves, F.J.M., Nogueira, H., Marques, J.C., Goncalves, A.M.M. (2019). Impacts of plastic products used in daily life on the environment and human health: What is known? Environ Toxicol Pharmacol; 72:103239.
  • [6] Yin, W., Qiu, C., Ji, H., Li, X., Sang, S., McClements, D.J., et al. (2023). Recent advances in biomolecule-based films and coatings for active and smart food packaging applications. Food Biosci; 52.
  • [7] Asgher, M., Qamar, S.A., Bilal, M., Iqbal, H.M.N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int; 137:109625.
  • [8] Leslie, H.A., van Velzen, M.J.M., Brandsma, S.H., Vethaak, A.D., Garcia-Vallejo, J.J., Lamoree, M.H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environ Int; 163:107199.
  • [9] Zhao, Q., Zhu, L., Weng, J., Jin, Z., Cao, Y., Jiang, H., et al. (2023). Detection and characterization of microplastics in the human testis and semen. Sci Total Environ; 877:162713.
  • [10] Groh, K.J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P.A., Lennquist, A., et al. (2019). Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ; 651:3253-68.
  • [11] Nilsen-Nygaard, J., Fernandez, E.N., Radusin, T., Rotabakk, B.T., Sarfraz, J., Sharmin, N., et al. (2021). Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf; 20:1333-80.
  • [12] Yao, L., Fan, L., Duan, Z. (2020). Effects of different packaging systems and storage temperatures on the physical and chemical quality of dried mango slices. LWT; 121:108981.
  • [13] Jafarzadeh, S., Jafari, S.M., Salehabadi, A., Nafchi, A.M., Uthaya Kumar, U.S., Khalil, H.P.S.A. (2020). Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci Technol; 100:262-77.
  • [14] Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A., et al. (2022). Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends Food Sci Technol; 120:154-73.
  • [15] Popa, M.S., Frone, A.N., Panaitescu, D.M. (2022). Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int J Biol Macromol; 207:263-77.
  • [16] Roy, S., Rhim, J.-W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol; 148:666-76.
  • [17] Zhao, Y., Sun, H., Yang, B., Weng, Y. (2020). Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers; 12.
  • [18] Realini, C.E., Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Sci; 98:404-19.
  • [19] Igwe Idumah, C., Nwabanne, J.T., Tanjung, F.A. (2021). Novel trends in poly (lactic) acid hybrid bionanocomposites. Cleaner Mater; 2.
  • [20] Israni, N., Shivakumar, S. (2019). Polyhydroxyalkanoates in packaging. In: Biotechnological applications of polyhydroxyalkanoates; p. 363-88.
  • [21] Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., Liu, J. (2019). Preparation of pH-sensitive and antioxidant packaging films based on kappa-carrageenan and mulberry polyphenolic extract. Int J Biol Macromol; 134:993-1001.
  • [22] Dai, L., Qiu, C., Xiong, L., Sun, Q. (2015). Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chem; 174:82-8.
  • [23] da Silva Braga, R., Poletto, M. (2020). Preparation and characterization of hemicellulose films from sugarcane bagasse. Materials (Basel); 13.
  • [24] Yang, W., Qi, G., Kenny, J.M., Puglia, D., Ma, P. (2020). Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant and water vapour barrier properties of glutaraldehyde crosslinked PVA films. Polymers (Basel); 12.
  • [25] Safitri, A., Sinaga, P., Nasution, H., Harahap, H., Masyithah, Z., Iskandinata, I., et al. (2022). The role of various plastisizers and fillers additions in improving tensile strength of starch-based bioplastics: A mini review. IOP Conf Ser Earth Environ Sci; 1115:012076.
  • [26] Schmid, M., Müller, K. (2019). Whey protein-based packaging films and coatings. In: Whey Proteins; p. 407-37.
  • [27] Rezaei, M., Pirsa, S., Chavoshizadeh, S. (2019). Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater; 30:2654-65.
  • [28] Khan, M.R., Volpe, S., Valentino, M., Miele, N.A., Cavella, S., Torrieri, E. (2021). Active casein coatings and films for perishable foods: Structural properties and shelf-life extension. Coatings; 11.
  • [29] Mangaraj, S., Yadav, A., Bal, L.M., Dash, S.K., Mahanti, N.K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. J Pack Technol Research; 3:77-96.
  • [30] Asad, M., Saba, N., Asiri, A.M., Jawaid, M., Indarti, E., Wanrosli, W.D. (2018). Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (vinyl alcohol) by casting method. Carbohydr Polym; 191:103-11.
  • [31] Sutay, D., Yağcı, S., Yurtdaş, E., Toptaş, M. (2023). Multiproduct biorefinery from defatted olive mill waste: preparation of hemicellulose-based biodegradable films and instant controlled pressure drop (DIC)-assisted isolation of value-added products. Biomass Convers Biorefin; 10.1007/s13399-023-03739-3.

Biodegradable Films: Sustainable Solutions for Food Packaging Applications

Year 2024, Volume: 3 Issue: 2, 65 - 78
https://doi.org/10.70395/cunas.1566145

Abstract

The increasing environmental implications of conventional plastic packaging has led to a raising interest in bio-degradable packaging materials as sustainable alternatives. Biodegradable materials, derived from sustainable resources such as plant-based biopolymers and natural fibers, offer significant environmental benefits, including reduced reliance on fossil fuels and decreased pollution. Various techniques can be employed for forming bio-degradable packaging films, including extrusion, solvent casting, compression molding and electrospinning. To address the limitations of biodegradable materials compared to traditional plastics, modification techniques such as esterification, etherification, and grafting can be employed. Innovative advancements like active and intelligent packaging technologies can enhance the functionality and consumer engagement. This review explores the key properties, advancements, applications and challenges associated with biodegradable packaging materials, focusing on their effectiveness and sustainability in the food packaging industry.

Ethical Statement

NA

Supporting Institution

NA

Thanks

NA

References

  • [1] Trajkovska Petkoska, A., Daniloski, D., D'Cunha, N.M., Naumovski, N., Broach, A.T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int; 140:109981.
  • [2] Jin, K., Tang, Y., Liu, J., Wang, J., Ye, C. (2021). Nanofibrillated cellulose as coating agent for food packaging paper. Int J Biol Macromol; 168:331-8.
  • [3] Otto, S., Strenger, M., Maier-Nöth, A., Schmid, M. (2021). Food Packaging and Sustainability – Consumer Perception vs. Correlated Scientific Facts: A Review. J Cleaner Prod; 298:126733.
  • [4] Molina-Besch, K., Wikström, F., Williams, H. (2018). The environmental impact of packaging in food supply chains—does life cycle assessment of food provide the full picture? Int J Life Cycle Assess; 24:37-50.
  • [5] Rodrigues, M.O., Abrantes, N., Goncalves, F.J.M., Nogueira, H., Marques, J.C., Goncalves, A.M.M. (2019). Impacts of plastic products used in daily life on the environment and human health: What is known? Environ Toxicol Pharmacol; 72:103239.
  • [6] Yin, W., Qiu, C., Ji, H., Li, X., Sang, S., McClements, D.J., et al. (2023). Recent advances in biomolecule-based films and coatings for active and smart food packaging applications. Food Biosci; 52.
  • [7] Asgher, M., Qamar, S.A., Bilal, M., Iqbal, H.M.N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int; 137:109625.
  • [8] Leslie, H.A., van Velzen, M.J.M., Brandsma, S.H., Vethaak, A.D., Garcia-Vallejo, J.J., Lamoree, M.H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environ Int; 163:107199.
  • [9] Zhao, Q., Zhu, L., Weng, J., Jin, Z., Cao, Y., Jiang, H., et al. (2023). Detection and characterization of microplastics in the human testis and semen. Sci Total Environ; 877:162713.
  • [10] Groh, K.J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P.A., Lennquist, A., et al. (2019). Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ; 651:3253-68.
  • [11] Nilsen-Nygaard, J., Fernandez, E.N., Radusin, T., Rotabakk, B.T., Sarfraz, J., Sharmin, N., et al. (2021). Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf; 20:1333-80.
  • [12] Yao, L., Fan, L., Duan, Z. (2020). Effects of different packaging systems and storage temperatures on the physical and chemical quality of dried mango slices. LWT; 121:108981.
  • [13] Jafarzadeh, S., Jafari, S.M., Salehabadi, A., Nafchi, A.M., Uthaya Kumar, U.S., Khalil, H.P.S.A. (2020). Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci Technol; 100:262-77.
  • [14] Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A., et al. (2022). Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends Food Sci Technol; 120:154-73.
  • [15] Popa, M.S., Frone, A.N., Panaitescu, D.M. (2022). Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int J Biol Macromol; 207:263-77.
  • [16] Roy, S., Rhim, J.-W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol; 148:666-76.
  • [17] Zhao, Y., Sun, H., Yang, B., Weng, Y. (2020). Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers; 12.
  • [18] Realini, C.E., Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Sci; 98:404-19.
  • [19] Igwe Idumah, C., Nwabanne, J.T., Tanjung, F.A. (2021). Novel trends in poly (lactic) acid hybrid bionanocomposites. Cleaner Mater; 2.
  • [20] Israni, N., Shivakumar, S. (2019). Polyhydroxyalkanoates in packaging. In: Biotechnological applications of polyhydroxyalkanoates; p. 363-88.
  • [21] Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., Liu, J. (2019). Preparation of pH-sensitive and antioxidant packaging films based on kappa-carrageenan and mulberry polyphenolic extract. Int J Biol Macromol; 134:993-1001.
  • [22] Dai, L., Qiu, C., Xiong, L., Sun, Q. (2015). Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chem; 174:82-8.
  • [23] da Silva Braga, R., Poletto, M. (2020). Preparation and characterization of hemicellulose films from sugarcane bagasse. Materials (Basel); 13.
  • [24] Yang, W., Qi, G., Kenny, J.M., Puglia, D., Ma, P. (2020). Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant and water vapour barrier properties of glutaraldehyde crosslinked PVA films. Polymers (Basel); 12.
  • [25] Safitri, A., Sinaga, P., Nasution, H., Harahap, H., Masyithah, Z., Iskandinata, I., et al. (2022). The role of various plastisizers and fillers additions in improving tensile strength of starch-based bioplastics: A mini review. IOP Conf Ser Earth Environ Sci; 1115:012076.
  • [26] Schmid, M., Müller, K. (2019). Whey protein-based packaging films and coatings. In: Whey Proteins; p. 407-37.
  • [27] Rezaei, M., Pirsa, S., Chavoshizadeh, S. (2019). Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater; 30:2654-65.
  • [28] Khan, M.R., Volpe, S., Valentino, M., Miele, N.A., Cavella, S., Torrieri, E. (2021). Active casein coatings and films for perishable foods: Structural properties and shelf-life extension. Coatings; 11.
  • [29] Mangaraj, S., Yadav, A., Bal, L.M., Dash, S.K., Mahanti, N.K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. J Pack Technol Research; 3:77-96.
  • [30] Asad, M., Saba, N., Asiri, A.M., Jawaid, M., Indarti, E., Wanrosli, W.D. (2018). Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (vinyl alcohol) by casting method. Carbohydr Polym; 191:103-11.
  • [31] Sutay, D., Yağcı, S., Yurtdaş, E., Toptaş, M. (2023). Multiproduct biorefinery from defatted olive mill waste: preparation of hemicellulose-based biodegradable films and instant controlled pressure drop (DIC)-assisted isolation of value-added products. Biomass Convers Biorefin; 10.1007/s13399-023-03739-3.
There are 31 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Reviews
Authors

Abdul Mueez Ahmad 0009-0009-1800-8354

Hassan Mehmood Sipra 0009-0003-8372-824X

Hafsa Hafsa 0009-0009-7843-6350

Early Pub Date December 11, 2024
Publication Date
Submission Date October 13, 2024
Acceptance Date November 22, 2024
Published in Issue Year 2024 Volume: 3 Issue: 2

Cite

APA Ahmad, A. M., Sipra, H. M., & Hafsa, H. (2024). Biodegradable Films: Sustainable Solutions for Food Packaging Applications. Cukurova University Journal of Natural and Applied Sciences, 3(2), 65-78. https://doi.org/10.70395/cunas.1566145
AMA Ahmad AM, Sipra HM, Hafsa H. Biodegradable Films: Sustainable Solutions for Food Packaging Applications. Cukurova University Journal of Natural and Applied Sciences. December 2024;3(2):65-78. doi:10.70395/cunas.1566145
Chicago Ahmad, Abdul Mueez, Hassan Mehmood Sipra, and Hafsa Hafsa. “Biodegradable Films: Sustainable Solutions for Food Packaging Applications”. Cukurova University Journal of Natural and Applied Sciences 3, no. 2 (December 2024): 65-78. https://doi.org/10.70395/cunas.1566145.
EndNote Ahmad AM, Sipra HM, Hafsa H (December 1, 2024) Biodegradable Films: Sustainable Solutions for Food Packaging Applications. Cukurova University Journal of Natural and Applied Sciences 3 2 65–78.
IEEE A. M. Ahmad, H. M. Sipra, and H. Hafsa, “Biodegradable Films: Sustainable Solutions for Food Packaging Applications”, Cukurova University Journal of Natural and Applied Sciences, vol. 3, no. 2, pp. 65–78, 2024, doi: 10.70395/cunas.1566145.
ISNAD Ahmad, Abdul Mueez et al. “Biodegradable Films: Sustainable Solutions for Food Packaging Applications”. Cukurova University Journal of Natural and Applied Sciences 3/2 (December 2024), 65-78. https://doi.org/10.70395/cunas.1566145.
JAMA Ahmad AM, Sipra HM, Hafsa H. Biodegradable Films: Sustainable Solutions for Food Packaging Applications. Cukurova University Journal of Natural and Applied Sciences. 2024;3:65–78.
MLA Ahmad, Abdul Mueez et al. “Biodegradable Films: Sustainable Solutions for Food Packaging Applications”. Cukurova University Journal of Natural and Applied Sciences, vol. 3, no. 2, 2024, pp. 65-78, doi:10.70395/cunas.1566145.
Vancouver Ahmad AM, Sipra HM, Hafsa H. Biodegradable Films: Sustainable Solutions for Food Packaging Applications. Cukurova University Journal of Natural and Applied Sciences. 2024;3(2):65-78.