Review
BibTex RIS Cite
Year 2024, Volume: 3 Issue: 2, 65 - 78, 31.12.2024
https://doi.org/10.70395/cunas.1566145

Abstract

References

  • [1] Trajkovska Petkoska, A., Daniloski, D., D'Cunha, N.M., Naumovski, N., Broach, A.T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int; 140:109981.
  • [2] Jin, K., Tang, Y., Liu, J., Wang, J., Ye, C. (2021). Nanofibrillated cellulose as coating agent for food packaging paper. Int J Biol Macromol; 168:331-8.
  • [3] Otto, S., Strenger, M., Maier-Nöth, A., Schmid, M. (2021). Food Packaging and Sustainability – Consumer Perception vs. Correlated Scientific Facts: A Review. J Cleaner Prod; 298:126733.
  • [4] Molina-Besch, K., Wikström, F., Williams, H. (2018). The environmental impact of packaging in food supply chains—does life cycle assessment of food provide the full picture? Int J Life Cycle Assess; 24:37-50.
  • [5] Rodrigues, M.O., Abrantes, N., Goncalves, F.J.M., Nogueira, H., Marques, J.C., Goncalves, A.M.M. (2019). Impacts of plastic products used in daily life on the environment and human health: What is known? Environ Toxicol Pharmacol; 72:103239.
  • [6] Yin, W., Qiu, C., Ji, H., Li, X., Sang, S., McClements, D.J., et al. (2023). Recent advances in biomolecule-based films and coatings for active and smart food packaging applications. Food Biosci; 52.
  • [7] Asgher, M., Qamar, S.A., Bilal, M., Iqbal, H.M.N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int; 137:109625.
  • [8] Leslie, H.A., van Velzen, M.J.M., Brandsma, S.H., Vethaak, A.D., Garcia-Vallejo, J.J., Lamoree, M.H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environ Int; 163:107199.
  • [9] Zhao, Q., Zhu, L., Weng, J., Jin, Z., Cao, Y., Jiang, H., et al. (2023). Detection and characterization of microplastics in the human testis and semen. Sci Total Environ; 877:162713.
  • [10] Groh, K.J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P.A., Lennquist, A., et al. (2019). Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ; 651:3253-68.
  • [11] Nilsen-Nygaard, J., Fernandez, E.N., Radusin, T., Rotabakk, B.T., Sarfraz, J., Sharmin, N., et al. (2021). Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf; 20:1333-80.
  • [12] Yao, L., Fan, L., Duan, Z. (2020). Effects of different packaging systems and storage temperatures on the physical and chemical quality of dried mango slices. LWT; 121:108981.
  • [13] Jafarzadeh, S., Jafari, S.M., Salehabadi, A., Nafchi, A.M., Uthaya Kumar, U.S., Khalil, H.P.S.A. (2020). Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci Technol; 100:262-77.
  • [14] Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A., et al. (2022). Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends Food Sci Technol; 120:154-73.
  • [15] Popa, M.S., Frone, A.N., Panaitescu, D.M. (2022). Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int J Biol Macromol; 207:263-77.
  • [16] Roy, S., Rhim, J.-W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol; 148:666-76.
  • [17] Zhao, Y., Sun, H., Yang, B., Weng, Y. (2020). Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers; 12.
  • [18] Realini, C.E., Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Sci; 98:404-19.
  • [19] Igwe Idumah, C., Nwabanne, J.T., Tanjung, F.A. (2021). Novel trends in poly (lactic) acid hybrid bionanocomposites. Cleaner Mater; 2.
  • [20] Israni, N., Shivakumar, S. (2019). Polyhydroxyalkanoates in packaging. In: Biotechnological applications of polyhydroxyalkanoates; p. 363-88.
  • [21] Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., Liu, J. (2019). Preparation of pH-sensitive and antioxidant packaging films based on kappa-carrageenan and mulberry polyphenolic extract. Int J Biol Macromol; 134:993-1001.
  • [22] Dai, L., Qiu, C., Xiong, L., Sun, Q. (2015). Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chem; 174:82-8.
  • [23] da Silva Braga, R., Poletto, M. (2020). Preparation and characterization of hemicellulose films from sugarcane bagasse. Materials (Basel); 13.
  • [24] Yang, W., Qi, G., Kenny, J.M., Puglia, D., Ma, P. (2020). Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant and water vapour barrier properties of glutaraldehyde crosslinked PVA films. Polymers (Basel); 12.
  • [25] Safitri, A., Sinaga, P., Nasution, H., Harahap, H., Masyithah, Z., Iskandinata, I., et al. (2022). The role of various plastisizers and fillers additions in improving tensile strength of starch-based bioplastics: A mini review. IOP Conf Ser Earth Environ Sci; 1115:012076.
  • [26] Schmid, M., Müller, K. (2019). Whey protein-based packaging films and coatings. In: Whey Proteins; p. 407-37.
  • [27] Rezaei, M., Pirsa, S., Chavoshizadeh, S. (2019). Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater; 30:2654-65.
  • [28] Khan, M.R., Volpe, S., Valentino, M., Miele, N.A., Cavella, S., Torrieri, E. (2021). Active casein coatings and films for perishable foods: Structural properties and shelf-life extension. Coatings; 11.
  • [29] Mangaraj, S., Yadav, A., Bal, L.M., Dash, S.K., Mahanti, N.K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. J Pack Technol Research; 3:77-96.
  • [30] Asad, M., Saba, N., Asiri, A.M., Jawaid, M., Indarti, E., Wanrosli, W.D. (2018). Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (vinyl alcohol) by casting method. Carbohydr Polym; 191:103-11.
  • [31] Sutay, D., Yağcı, S., Yurtdaş, E., Toptaş, M. (2023). Multiproduct biorefinery from defatted olive mill waste: preparation of hemicellulose-based biodegradable films and instant controlled pressure drop (DIC)-assisted isolation of value-added products. Biomass Convers Biorefin; 10.1007/s13399-023-03739-3.
  • [32] Jaderi, Z., Tabatabaee Yazdi, F., Mortazavi, S.A., Koocheki, A. (2023). Effects of glycerol and sorbitol on a novel biodegradable edible film based on Malva sylvestris flower gum. Food Sci Nutr; 11:991-1000.
  • [33] Hyvärinen, M., Jabeen, R., Kärki, T. (2020). The modelling of extrusion processes for polymers—a review. Polymers; 12.
  • [34] Krepker, M., Zhang, C., Nitzan, N., Prinz-Setter, O., Massad-Ivanir, N., Olah, A., et al. (2018). Antimicrobial LDPE/EVOH layered films containing carvacrol fabricated by multiplication extrusion. Polymers; 10.
  • [35] Faust, S., Foerster, J., Lindner, M., Schmid, M. (2021). Effect of glycerol and sorbitol on the mechanical and barrier properties of films based on pea protein isolate produced by high‐moisture extrusion processing. Polym Eng Sci; 62:95-102.
  • [36] Bahcegul, E., Akinalan, B., Toraman, H.E., Erdemir, D., Ozkan, N., Bakir, U. (2013). Extrusion of xylans extracted from corn cobs into biodegradable polymeric materials. Bioresour Technol; 149:582-5.
  • [37] Khan, W.S., Asmatulu, R., Ceylan, M., Jabbarnia, A. (2013). Recent progress on conventional and non-conventional electro-spinning processes. Fibers and Polymers; 14:1235-47.
  • [38] Zhang, C., Li, Y., Wang, P., Zhang, H. (2020). Electrospinning of nanofibers: potentials and perspectives for active food packag-ing. Compr Rev Food Sci Food Safe; 19:479-502.
  • [39] Park, S., Park, K., Yoon, H., Son, J., Min, T., Kim, G. (2007). Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication. Polymer International; 56:1361-6.
  • [40] Zehetmeyer, G., Meira, S.M.M., Scheibel, J.M., de Brito da Silva, C., Rodembusch, F.S., Brandelli, A., et al. (2017). Biode-gradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers. Polymer Bulletin; 74:3243-68.
  • [41] Roy, S., & Rhim, J.-W. (2021). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews in Food Sci Nutri; 61:2297-325.
  • [42] Guerrero, P., Muxika, A., Zarandona, I., & de la Caba, K. (2019). Crosslinking of chitosan films processed by compression molding. Carbohydr Polym; 206:820-6.
  • [43] de Matos Costa, A.R., Crocitti, A., Hecker de Carvalho, L.H., Carroccio, S.C., Cerruti, P., & Santagata, G. (2020). Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends. Pol-ymers (Basel); 12.
  • [44] Marichelvam, M., Jawaid, M., & Asim. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers; 7.
  • [45] Ballesteros-Mártinez, L., Pérez-Cervera, C., & Andrade-Pizarro, R. (2020). Effect of glycerol and sorbitol concentrations on me-chanical, optical, and barrier properties of sweet potato starch film. NFS Journal; 20:1-9.
  • [46] Forssell, P., Lahtinen, R., Lahelin, M., & Myllärinen, P. (2002). Oxygen permeability of amylose and amylopectin films. Carbo-hydr Polym; 47:125-9.
  • [47] Vieira, M.G.A., da Silva, M.A., dos Santos, L.O., & Beppu, M.M. (2011). Natural-based plasticizers and biopolymer films: A review. Eur Polym J; 47:254-63.
  • [48] Wang, C., Gong, C., Qin, Y., Hu, Y., Jiao, A., Jin, Z., et al. (2022). Bioactive and functional biodegradable packaging films rein-forced with nanoparticles. J Food Eng; 312:110752.
  • [49] Fukuda, J., & Hsieh, Y.-L. (2022). Almond shell nanocellulose: Characterization and self-assembling into fibers, films, and aero-gels. Ind Crops Prod; 186.
  • [50] Kampeerapappun, P., Aht-ong, D., Pentrakoon, D., & Srikulkit, K. (2007). Preparation of cassava starch/montmorillonite com-posite film. Carbohydr Polym; 67:155-63.
  • [51] Jiang, B., Li, S., Wu, Y., Song, J., Chen, S., Li, X., et al. (2018). Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. Materials; 16:1045-54.
  • [52] Shi, J., Wu, R., Li, Y., Ma, L., Liu, S., Liu, R., et al. (2022). Antimicrobial food packaging composite films prepared from hemi-cellulose/polyvinyl alcohol/potassium cinnamate blends. Inter J Bio Macromol; 222:395-402.
  • [53] Gupta, H., Kumar, H., Gehlaut, A.K., Singh, S.K., Gaur, A., Sachan, S., et al. (2022). Preparation and characterization of bio-composite films obtained from coconut coir and groundnut shell for food packaging. J Mater Cycles Waste Manag; 24:569-81.
  • [54] Silva, M., Bierhalz, A., & Kieckbusch, T. (2009). Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydr Polym; 77:736-42.
  • [55] El Miri, N., Aziz, F., Aboulkas, A., El Bouchti, M., Ben Youcef, H., & El Achaby, M. (2018). Effect of plasticizers on physico-chemical properties of cellulose nanocrystals filled alginate bionanocomposite films. Adv Polym Technol; 37:3171-85.
  • [56] Wang, S., Ren, J., Li, W., Sun, R., & Liu, S. (2014). Properties of polyvinyl alcohol/xylan composite films with citric acid. Car-bohydr Polym; 103:94-9.
  • [57] Petzold-Welcke, K., Schwikal, K., Daus, S., & Heinze, T. (2014). Xylan derivatives and their application potential – Mini-review of own results. Carbohydr Polym; 100:80-8.
  • [58] Härdelin, L., Bernin, D., Börjesson, M., Ström, A., & Larsson, A. (2020). Altered thermal and mechanical properties of spruce galactoglucomannan films modified with an etherification reaction. Biomacromolecules; 21:1832-40.
  • [59] Du, J., Li, C., Zhao, Y., & Wang, H. (2018). Hemicellulose isolated from waste liquor of viscose fiber mill for preparation of polyacrylamide-hemicellulose hybrid films. Inter J Bio Macromol; 108:1255-60.
  • [60] Zhang, T., Yu, Z., Ma, Y., Chiou, B.-S., Liu, F., & Zhong, F. (2022). Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values. Food Hydrocolloids; 124.
  • [61] Bonilla, J., Paiano, R.B., Lourenço, R.V., Bittante, A.M.Q.B., & Sobral, P.J.A. (2021). Biodegradation of films based on natural and synthetic biopolymers using an aquatic system from active sludge. J Poly Environ; 29:1380-95.
  • [62] Yildirim, S., Röcker, B., Pettersen, M.K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., et al. (2018). Active packaging applications for food. Compr Rev Food Sci Food Safe; 17:165-99.
  • [63] Nguyen, T.T., Thi Dao, U.T., Thi Bui, Q.P., Bach, G.L., Ha Thuc, C.N., & Ha Thuc, H. (2020). Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf ex-tract. Prog Org Coat; 140:105487.
  • [64] Dey, A., & Neogi, S. (2019). Oxygen scavengers for food packaging applications: A review. Trends in Food Sci Technol; 90:26-34.
  • [65] Zhang, N., Bi, F., Xu, F., Yong, H., Bao, Y., Jin, C., et al. (2020). Structure and functional properties of active packaging films prepared by incorporating different flavonols into chitosan based matrix. Inter J Bio Macromol; 165:625-34.
  • [66] Gaikwad, K.K., Singh, S., & Negi, Y.S. (2020). Ethylene scavengers for active packaging of fresh food produce. Environ Chem Lett; 18:269-84.
  • [67] Xu, D., Chen, T., & Liu, Y. (2021). The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polymer Bulletin; 78:3607-24.
  • [68] Lian, H., Shi, J., Zhang, X., & Peng, Y. (2020). Effect of the added polysaccharide on the release of thyme essential oil and struc-ture properties of chitosan based film. Food Packag Shelf Life; 23:100467.
  • [69] Wu, Z., Wu, J., Peng, T., Li, Y., Lin, D., Xing, B., et al. (2017). Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers; 9.
  • [70] Kadam, A.A., Singh, S., & Gaikwad, K.K. (2021). Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications. Food Control; 124:107877.
  • [71] Nunes, M.R., de Souza Maguerroski Castilho, M., de Lima Veeck, A.P., da Rosa, C.G., Noronha, C.M., Maciel, M.V.O.B., et al. (2018). Antioxidant and antimicrobial methylcellulose films containing Lippia alba extract and silver nanoparticles. Carbohydr Polym; 192:37-43.
  • [72] Lukic, I., Vulic, J., & Ivanovic, J. (2020). Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging. Food Packag Shelf Life; 26:100578.
  • [73] Ge, L., Zhu, M., Li, X., Xu, Y., Ma, X., Shi, R., et al. (2018). Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids; 83:308-16.
  • [74] Mohamad, N., Mazlan, M.M., Tawakkal, I.S.M.A., Talib, R.A., Kian, L.K., Fouad, H., et al. (2020). Development of active agents filled polylactic acid films for food packaging application. Inter J Bio Macromol; 163:1451-7.
  • [75] He, L., Lan, W., Ahmed, S., Qin, W., & Liu, Y. (2019). Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging. Food Packag Shelf Life; 22:100390.
  • [76] Zinoviadou, K.G., Koutsoumanis, K.P., & Biliaderis, C.G. (2010). Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids; 24:49-59.
  • [77] Liu, J., Yong, H., Liu, Y., Qin, Y., Kan, J., & Liu, J. (2019). Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packag Shelf Life; 22:100417.
  • [78] Youssef, A.M., El-Sayed, S.M., El-Sayed, H.S., Salama, H.H., & Dufresne, A. (2016). Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym; 151:9-19.
  • [79] Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., & Liu, J. (2019). Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids; 94:80-92.
  • [80] Akbar, A., & Anal, A.K. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhi-murium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control; 38:88-95.
  • [81] Moghimi, R., Aliahmadi, A., & Rafati, H. (2017). Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydr Polym; 175:241-8.
  • [82] Min, S., Harris, L.J., & Krochta, J.M. (2005). Antimicrobial Effects of Lactoferrin, Lysozyme, and the Lactoperoxidase System and Edible Whey Protein Films Incorporating the Lactoperoxidase System Against *Salmonella enterica* and *Escherichia coli* O157:H7. J Food Sci; 70:m332-m8.
  • [83] Ezati, P., & Rhim, J-W. (2020). pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applica-tions. Food Hydrocolloids; 102:105629.
  • [84] Amin, U., Khan, M.K.I., Maan, A.A., Nazir, A., Riaz, S., Khan, M.U., et al. (2022). Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag Shelf Life; 33:100903.
  • [85] Li, Y., Ying, Y., Zhou, Y., Ge, Y., Yuan, C., Wu, C., et al. (2019). A pH-indicating intelligent packaging composed of chitosan-purple potato extractions strengthened by surface-deacetylated chitin nanofibers. Inter J Bio Macromol; 127:376-84.
  • [86] Jamróz, E., Kulawik, P., Krzyściak, P., Talaga-Ćwiertnia, K., & Juszczak, L. (2019). Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. Inter J Bio Macromol; 122:745-57.
  • [87] Jung, J., Puligundla, P., & Ko, S. (2012). Proof-of-concept study of chitosan-based carbon dioxide indicator for food packaging applications. Food Chem; 135:2170-4.
  • [88] Pucci, A., Signori, F., Bizzarri, R., Bronco, S., Ruggeri, G., & Ciardelli, F. (2010). Threshold temperature luminescent indicators from biodegradable poly(lactic acid)/poly(butylene succinate) blends. J Mater Chem; 20:5843-52.
  • [89] Vu, C.H.T., & Won, K. (2014). Leaching-Resistant Carrageenan-Based Colorimetric Oxygen Indicator Films for Intelligent Food Packaging. J Agri Food Chem; 62:7263-7.
  • [90] Vo, T.-V., Dang, T.-H., & Chen, B.-H. (2019). Synthesis of Intelligent pH Indicative Films from Chitosan/Poly(vinyl alco-hol)/Anthocyanin Extracted from Red Cabbage. Polymers; 11.
  • [91] Sun, G., Chi, W., Zhang, C., Xu, S., Li, J., & Wang, L. (2019). Developing a green film with pH-sensitivity and antioxidant activity based on κ-carrageenan and hydroxypropyl methylcellulose incorporating Prunus maackii juice. Food Hydrocolloids; 94:345-53.
  • [92] Aghaei, Z., Emadzadeh, B., Ghorani, B., & Kadkhodaee, R. (2018). Cellulose Acetate Nanofibres Containing Alizarin as a Halo-chromic Sensor for the Qualitative Assessment of Rainbow Trout Fish Spoilage. Food Bioprocess Technol; 11:1087-95.
  • [93] Ardiyansyah, Apriliyanti, M.W., Wahyono, A., Fatoni, M., Poerwanto, B., & Suryaningsih, W. (2018). The Potency of betacya-nins extract from a peel of dragon fruits as a source of colourimetric indicator to develop intelligent packaging for fish freshness monitoring. IOP Conference Series: Earth and Environmental Science; 207:012038.
  • [94] Latos-Brozio, M., & Masek, A. (2020). The application of natural food colorants as indicator substances in intelligent biode-gradable packaging materials. Food Chem Toxicol; 135:110975.
  • [95] Huang, S., Xiong, Y., Zou, Y., Dong, Q., Ding, F., Liu, X., et al. (2019). A novel colorimetric indicator based on agar incorpo-rated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocolloids; 90:198-205.
  • [96] Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr Polym; 222:115030.
  • [97] Ding, L., Li, X., Hu, L., Zhang, Y., Jiang, Y., Mao, Z., et al. (2020). A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydr Polym; 233:115859.
  • [98] Wan, X., He, Q., Wang, X., Liu, M., Lin, S., Shi, R., et al. (2021). Water-soluble chitosan-based indicator label membrane and its response behavior to carbon dioxide. Food Control; 130:108355.
  • [99] Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2019). A pH and NH3 sensing intelligent film based on Artemisia sphaerocepha-la Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hy-drocolloids; 87:858-68.
  • [100] Wu, S., Wang, W., Yan, K., Ding, F., Shi, X., Deng, H., et al. (2018). Electrochemical writing on edible polysaccharide films for intelligent food packaging. Carbohydr Polym; 186:236-42.
  • [101] Kato Jr, E.T., Yoshida, C.M.P., Reis, A.B., Melo, I.S., & Franco, T.T. (2011). Fast detection of hydrogen sulfide using a biodegradable colorimetric indicator system. Polymer International; 60:951-6.
  • [102] Sukhavattanakul, P., & Manuspiya, H. (2020). Fabrication of hybrid thin film based on bacterial cellulose nanocrystals and metal nanoparticles with hydrogen sulfide gas sensor ability. Carbohydr Polym; 230:115566.
  • [103] Arnon-Rips, H., Sabag, A., Tepper-Bamnolker, P., Chalupovich, D., Levi-Kalisman, Y., Eshel, D., et al. (2020). Effective suppression of potato tuber sprouting using polysaccharide-based emulsified films for prolonged release of citral. Food Hydrocol-loids; 103:105644.
  • [104] Ezati, P., Khan, A., Priyadarshi, R., Bhattacharya, T., Tammina, S.K., & Rhim, J-W. (2023). Biopolymer-based UV protec-tion functional films for food packaging. Food Hydrocolloids; 142:108771.
  • [105] Koirala, P., Nirmal, N.P., Woraprayote, W., Visessanguan, W., Bhandari, Y., Karim, N.U., et al. (2023). Nano-engineered edible films and coatings for seafood products. Food Packag Shelf Life; 38:101135.
  • [106] Yu, Y., Zheng, J., Li, J., Lu, L., Yan, J., Zhang, L., et al. (2021). Applications of two-dimensional materials in food packaging. Trends in Food Sci Technol; 110:443-57.
  • [107] Channa, I.A., Ashfaq, J., Siddiqui, M.A., Chandio, A.D., Shar, M.A., & Alhazaa, A. (2022). Multi-Shaded Edible Films Based on Gelatin and Starch for the Packaging Applications. Polymers [Internet]; 14.
  • [108] Gascon, M. (2007). Masking agents for use in foods. In: editor^editors (Ed.), Modifying Flavour in Food: Woodhead Pub-lishing; 232-42.
  • [109] Gaikwad, K.K., Singh, S., & Lee, Y.S. (2018). Oxygen scavenging films in food packaging. Emerg Conta; 16:523-38.
  • [110] Rhim, J-W. (2004). Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Sci and Tech-nol; 37:323-30.
  • [111] Liu, C., Huang, J., Zheng, X., Liu, S., Lu, K., Tang, K., et al. (2020). Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag Shelf Life; 24:100485.
  • [112] Lu, Y., Luo, Q., Chu, Y., Tao, N., Deng, S., Wang, L., et al. (2022). Application of Gelatin in Food Packaging: A Review. Polymers [Internet]; 14.
  • [113] Putranto, A.W., Sakhbani, M.M., Khoir, N.H., Mutiarani, N., Susilo, B., & Herman to, M.B. (2021). Design and perfor-mance evaluation of edible film printing machine based on automatic casting knife. IOP Conference Series: Earth and Environ-mental Science; 733:012006.
  • [114] Liu, B.-Y., Xue, C.-H., An, Q.-F., Jia, S.-T., & Xu, M.-M. (2019). Fabrication of superhydrophobic coatings with edible materials for super-repelling non-Newtonian liquid foods. Chem Eng J; 371:833-41.
  • [115] Huang, S., Wang, G., Lin, H., Xiong, Y., Liu, X., & Li, H. (2021). Preparation and dynamic response properties of colori-metric indicator films containing pH-sensitive anthocyanins. Sensors and Actuators Reports; 3:100049.
  • [116] Wang, Q., Chen, W., Zhu, W., McClements, D.J., Liu, X., & Liu, F. (2022). A review of multilayer and composite films and coatings for active biodegradable packaging. npj Sci of Food; 6:18.
  • [117] Ordoñez, R., Atarés, L., & Chiralt, A. (2022). Biodegradable active materials containing phenolic acids for food packaging applications. Compr Rev Food Sci Food Safe; 21:3910-30.
  • [118] Sothornvit, R., & Krochta, J.M. (2005). Plasticizers in edible films and coatings. In: Innovations in Food Packaging: Aca-demic Press; 403-33.
  • [119] Bhatia, S., Al-Harrasi, A., Al-Azri, M.S., Ullah, S., Makeen, H.A., Meraya, A.M., et al. (2022). Gallic Acid Crosslinked Gela-tin and Casein Based Composite Films for Food Packaging Applications. Polymers; 14.

Biodegradable Films: Sustainable Solutions for Food Packaging Applications

Year 2024, Volume: 3 Issue: 2, 65 - 78, 31.12.2024
https://doi.org/10.70395/cunas.1566145

Abstract

The increasing environmental implications of conventional plastic packaging has led to a raising interest in bio-degradable packaging materials as sustainable alternatives. Biodegradable materials, derived from sustainable resources such as plant-based biopolymers and natural fibers, offer significant environmental benefits, including reduced reliance on fossil fuels and decreased pollution. Various techniques can be employed for forming bio-degradable packaging films, including extrusion, solvent casting, compression molding and electrospinning. To address the limitations of biodegradable materials compared to traditional plastics, modification techniques such as esterification, etherification, and grafting can be employed. Innovative advancements like active and intelligent packaging technologies can enhance the functionality and consumer engagement. This review explores the key properties, advancements, applications and challenges associated with biodegradable packaging materials, focusing on their effectiveness and sustainability in the food packaging industry.

Ethical Statement

NA

Supporting Institution

NA

Thanks

NA

References

  • [1] Trajkovska Petkoska, A., Daniloski, D., D'Cunha, N.M., Naumovski, N., Broach, A.T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int; 140:109981.
  • [2] Jin, K., Tang, Y., Liu, J., Wang, J., Ye, C. (2021). Nanofibrillated cellulose as coating agent for food packaging paper. Int J Biol Macromol; 168:331-8.
  • [3] Otto, S., Strenger, M., Maier-Nöth, A., Schmid, M. (2021). Food Packaging and Sustainability – Consumer Perception vs. Correlated Scientific Facts: A Review. J Cleaner Prod; 298:126733.
  • [4] Molina-Besch, K., Wikström, F., Williams, H. (2018). The environmental impact of packaging in food supply chains—does life cycle assessment of food provide the full picture? Int J Life Cycle Assess; 24:37-50.
  • [5] Rodrigues, M.O., Abrantes, N., Goncalves, F.J.M., Nogueira, H., Marques, J.C., Goncalves, A.M.M. (2019). Impacts of plastic products used in daily life on the environment and human health: What is known? Environ Toxicol Pharmacol; 72:103239.
  • [6] Yin, W., Qiu, C., Ji, H., Li, X., Sang, S., McClements, D.J., et al. (2023). Recent advances in biomolecule-based films and coatings for active and smart food packaging applications. Food Biosci; 52.
  • [7] Asgher, M., Qamar, S.A., Bilal, M., Iqbal, H.M.N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int; 137:109625.
  • [8] Leslie, H.A., van Velzen, M.J.M., Brandsma, S.H., Vethaak, A.D., Garcia-Vallejo, J.J., Lamoree, M.H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environ Int; 163:107199.
  • [9] Zhao, Q., Zhu, L., Weng, J., Jin, Z., Cao, Y., Jiang, H., et al. (2023). Detection and characterization of microplastics in the human testis and semen. Sci Total Environ; 877:162713.
  • [10] Groh, K.J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P.A., Lennquist, A., et al. (2019). Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ; 651:3253-68.
  • [11] Nilsen-Nygaard, J., Fernandez, E.N., Radusin, T., Rotabakk, B.T., Sarfraz, J., Sharmin, N., et al. (2021). Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf; 20:1333-80.
  • [12] Yao, L., Fan, L., Duan, Z. (2020). Effects of different packaging systems and storage temperatures on the physical and chemical quality of dried mango slices. LWT; 121:108981.
  • [13] Jafarzadeh, S., Jafari, S.M., Salehabadi, A., Nafchi, A.M., Uthaya Kumar, U.S., Khalil, H.P.S.A. (2020). Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci Technol; 100:262-77.
  • [14] Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A., et al. (2022). Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends Food Sci Technol; 120:154-73.
  • [15] Popa, M.S., Frone, A.N., Panaitescu, D.M. (2022). Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int J Biol Macromol; 207:263-77.
  • [16] Roy, S., Rhim, J.-W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol; 148:666-76.
  • [17] Zhao, Y., Sun, H., Yang, B., Weng, Y. (2020). Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers; 12.
  • [18] Realini, C.E., Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Sci; 98:404-19.
  • [19] Igwe Idumah, C., Nwabanne, J.T., Tanjung, F.A. (2021). Novel trends in poly (lactic) acid hybrid bionanocomposites. Cleaner Mater; 2.
  • [20] Israni, N., Shivakumar, S. (2019). Polyhydroxyalkanoates in packaging. In: Biotechnological applications of polyhydroxyalkanoates; p. 363-88.
  • [21] Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., Liu, J. (2019). Preparation of pH-sensitive and antioxidant packaging films based on kappa-carrageenan and mulberry polyphenolic extract. Int J Biol Macromol; 134:993-1001.
  • [22] Dai, L., Qiu, C., Xiong, L., Sun, Q. (2015). Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chem; 174:82-8.
  • [23] da Silva Braga, R., Poletto, M. (2020). Preparation and characterization of hemicellulose films from sugarcane bagasse. Materials (Basel); 13.
  • [24] Yang, W., Qi, G., Kenny, J.M., Puglia, D., Ma, P. (2020). Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant and water vapour barrier properties of glutaraldehyde crosslinked PVA films. Polymers (Basel); 12.
  • [25] Safitri, A., Sinaga, P., Nasution, H., Harahap, H., Masyithah, Z., Iskandinata, I., et al. (2022). The role of various plastisizers and fillers additions in improving tensile strength of starch-based bioplastics: A mini review. IOP Conf Ser Earth Environ Sci; 1115:012076.
  • [26] Schmid, M., Müller, K. (2019). Whey protein-based packaging films and coatings. In: Whey Proteins; p. 407-37.
  • [27] Rezaei, M., Pirsa, S., Chavoshizadeh, S. (2019). Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater; 30:2654-65.
  • [28] Khan, M.R., Volpe, S., Valentino, M., Miele, N.A., Cavella, S., Torrieri, E. (2021). Active casein coatings and films for perishable foods: Structural properties and shelf-life extension. Coatings; 11.
  • [29] Mangaraj, S., Yadav, A., Bal, L.M., Dash, S.K., Mahanti, N.K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. J Pack Technol Research; 3:77-96.
  • [30] Asad, M., Saba, N., Asiri, A.M., Jawaid, M., Indarti, E., Wanrosli, W.D. (2018). Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (vinyl alcohol) by casting method. Carbohydr Polym; 191:103-11.
  • [31] Sutay, D., Yağcı, S., Yurtdaş, E., Toptaş, M. (2023). Multiproduct biorefinery from defatted olive mill waste: preparation of hemicellulose-based biodegradable films and instant controlled pressure drop (DIC)-assisted isolation of value-added products. Biomass Convers Biorefin; 10.1007/s13399-023-03739-3.
  • [32] Jaderi, Z., Tabatabaee Yazdi, F., Mortazavi, S.A., Koocheki, A. (2023). Effects of glycerol and sorbitol on a novel biodegradable edible film based on Malva sylvestris flower gum. Food Sci Nutr; 11:991-1000.
  • [33] Hyvärinen, M., Jabeen, R., Kärki, T. (2020). The modelling of extrusion processes for polymers—a review. Polymers; 12.
  • [34] Krepker, M., Zhang, C., Nitzan, N., Prinz-Setter, O., Massad-Ivanir, N., Olah, A., et al. (2018). Antimicrobial LDPE/EVOH layered films containing carvacrol fabricated by multiplication extrusion. Polymers; 10.
  • [35] Faust, S., Foerster, J., Lindner, M., Schmid, M. (2021). Effect of glycerol and sorbitol on the mechanical and barrier properties of films based on pea protein isolate produced by high‐moisture extrusion processing. Polym Eng Sci; 62:95-102.
  • [36] Bahcegul, E., Akinalan, B., Toraman, H.E., Erdemir, D., Ozkan, N., Bakir, U. (2013). Extrusion of xylans extracted from corn cobs into biodegradable polymeric materials. Bioresour Technol; 149:582-5.
  • [37] Khan, W.S., Asmatulu, R., Ceylan, M., Jabbarnia, A. (2013). Recent progress on conventional and non-conventional electro-spinning processes. Fibers and Polymers; 14:1235-47.
  • [38] Zhang, C., Li, Y., Wang, P., Zhang, H. (2020). Electrospinning of nanofibers: potentials and perspectives for active food packag-ing. Compr Rev Food Sci Food Safe; 19:479-502.
  • [39] Park, S., Park, K., Yoon, H., Son, J., Min, T., Kim, G. (2007). Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication. Polymer International; 56:1361-6.
  • [40] Zehetmeyer, G., Meira, S.M.M., Scheibel, J.M., de Brito da Silva, C., Rodembusch, F.S., Brandelli, A., et al. (2017). Biode-gradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers. Polymer Bulletin; 74:3243-68.
  • [41] Roy, S., & Rhim, J.-W. (2021). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews in Food Sci Nutri; 61:2297-325.
  • [42] Guerrero, P., Muxika, A., Zarandona, I., & de la Caba, K. (2019). Crosslinking of chitosan films processed by compression molding. Carbohydr Polym; 206:820-6.
  • [43] de Matos Costa, A.R., Crocitti, A., Hecker de Carvalho, L.H., Carroccio, S.C., Cerruti, P., & Santagata, G. (2020). Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends. Pol-ymers (Basel); 12.
  • [44] Marichelvam, M., Jawaid, M., & Asim. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers; 7.
  • [45] Ballesteros-Mártinez, L., Pérez-Cervera, C., & Andrade-Pizarro, R. (2020). Effect of glycerol and sorbitol concentrations on me-chanical, optical, and barrier properties of sweet potato starch film. NFS Journal; 20:1-9.
  • [46] Forssell, P., Lahtinen, R., Lahelin, M., & Myllärinen, P. (2002). Oxygen permeability of amylose and amylopectin films. Carbo-hydr Polym; 47:125-9.
  • [47] Vieira, M.G.A., da Silva, M.A., dos Santos, L.O., & Beppu, M.M. (2011). Natural-based plasticizers and biopolymer films: A review. Eur Polym J; 47:254-63.
  • [48] Wang, C., Gong, C., Qin, Y., Hu, Y., Jiao, A., Jin, Z., et al. (2022). Bioactive and functional biodegradable packaging films rein-forced with nanoparticles. J Food Eng; 312:110752.
  • [49] Fukuda, J., & Hsieh, Y.-L. (2022). Almond shell nanocellulose: Characterization and self-assembling into fibers, films, and aero-gels. Ind Crops Prod; 186.
  • [50] Kampeerapappun, P., Aht-ong, D., Pentrakoon, D., & Srikulkit, K. (2007). Preparation of cassava starch/montmorillonite com-posite film. Carbohydr Polym; 67:155-63.
  • [51] Jiang, B., Li, S., Wu, Y., Song, J., Chen, S., Li, X., et al. (2018). Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. Materials; 16:1045-54.
  • [52] Shi, J., Wu, R., Li, Y., Ma, L., Liu, S., Liu, R., et al. (2022). Antimicrobial food packaging composite films prepared from hemi-cellulose/polyvinyl alcohol/potassium cinnamate blends. Inter J Bio Macromol; 222:395-402.
  • [53] Gupta, H., Kumar, H., Gehlaut, A.K., Singh, S.K., Gaur, A., Sachan, S., et al. (2022). Preparation and characterization of bio-composite films obtained from coconut coir and groundnut shell for food packaging. J Mater Cycles Waste Manag; 24:569-81.
  • [54] Silva, M., Bierhalz, A., & Kieckbusch, T. (2009). Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydr Polym; 77:736-42.
  • [55] El Miri, N., Aziz, F., Aboulkas, A., El Bouchti, M., Ben Youcef, H., & El Achaby, M. (2018). Effect of plasticizers on physico-chemical properties of cellulose nanocrystals filled alginate bionanocomposite films. Adv Polym Technol; 37:3171-85.
  • [56] Wang, S., Ren, J., Li, W., Sun, R., & Liu, S. (2014). Properties of polyvinyl alcohol/xylan composite films with citric acid. Car-bohydr Polym; 103:94-9.
  • [57] Petzold-Welcke, K., Schwikal, K., Daus, S., & Heinze, T. (2014). Xylan derivatives and their application potential – Mini-review of own results. Carbohydr Polym; 100:80-8.
  • [58] Härdelin, L., Bernin, D., Börjesson, M., Ström, A., & Larsson, A. (2020). Altered thermal and mechanical properties of spruce galactoglucomannan films modified with an etherification reaction. Biomacromolecules; 21:1832-40.
  • [59] Du, J., Li, C., Zhao, Y., & Wang, H. (2018). Hemicellulose isolated from waste liquor of viscose fiber mill for preparation of polyacrylamide-hemicellulose hybrid films. Inter J Bio Macromol; 108:1255-60.
  • [60] Zhang, T., Yu, Z., Ma, Y., Chiou, B.-S., Liu, F., & Zhong, F. (2022). Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values. Food Hydrocolloids; 124.
  • [61] Bonilla, J., Paiano, R.B., Lourenço, R.V., Bittante, A.M.Q.B., & Sobral, P.J.A. (2021). Biodegradation of films based on natural and synthetic biopolymers using an aquatic system from active sludge. J Poly Environ; 29:1380-95.
  • [62] Yildirim, S., Röcker, B., Pettersen, M.K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., et al. (2018). Active packaging applications for food. Compr Rev Food Sci Food Safe; 17:165-99.
  • [63] Nguyen, T.T., Thi Dao, U.T., Thi Bui, Q.P., Bach, G.L., Ha Thuc, C.N., & Ha Thuc, H. (2020). Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf ex-tract. Prog Org Coat; 140:105487.
  • [64] Dey, A., & Neogi, S. (2019). Oxygen scavengers for food packaging applications: A review. Trends in Food Sci Technol; 90:26-34.
  • [65] Zhang, N., Bi, F., Xu, F., Yong, H., Bao, Y., Jin, C., et al. (2020). Structure and functional properties of active packaging films prepared by incorporating different flavonols into chitosan based matrix. Inter J Bio Macromol; 165:625-34.
  • [66] Gaikwad, K.K., Singh, S., & Negi, Y.S. (2020). Ethylene scavengers for active packaging of fresh food produce. Environ Chem Lett; 18:269-84.
  • [67] Xu, D., Chen, T., & Liu, Y. (2021). The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polymer Bulletin; 78:3607-24.
  • [68] Lian, H., Shi, J., Zhang, X., & Peng, Y. (2020). Effect of the added polysaccharide on the release of thyme essential oil and struc-ture properties of chitosan based film. Food Packag Shelf Life; 23:100467.
  • [69] Wu, Z., Wu, J., Peng, T., Li, Y., Lin, D., Xing, B., et al. (2017). Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers; 9.
  • [70] Kadam, A.A., Singh, S., & Gaikwad, K.K. (2021). Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications. Food Control; 124:107877.
  • [71] Nunes, M.R., de Souza Maguerroski Castilho, M., de Lima Veeck, A.P., da Rosa, C.G., Noronha, C.M., Maciel, M.V.O.B., et al. (2018). Antioxidant and antimicrobial methylcellulose films containing Lippia alba extract and silver nanoparticles. Carbohydr Polym; 192:37-43.
  • [72] Lukic, I., Vulic, J., & Ivanovic, J. (2020). Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging. Food Packag Shelf Life; 26:100578.
  • [73] Ge, L., Zhu, M., Li, X., Xu, Y., Ma, X., Shi, R., et al. (2018). Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids; 83:308-16.
  • [74] Mohamad, N., Mazlan, M.M., Tawakkal, I.S.M.A., Talib, R.A., Kian, L.K., Fouad, H., et al. (2020). Development of active agents filled polylactic acid films for food packaging application. Inter J Bio Macromol; 163:1451-7.
  • [75] He, L., Lan, W., Ahmed, S., Qin, W., & Liu, Y. (2019). Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging. Food Packag Shelf Life; 22:100390.
  • [76] Zinoviadou, K.G., Koutsoumanis, K.P., & Biliaderis, C.G. (2010). Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids; 24:49-59.
  • [77] Liu, J., Yong, H., Liu, Y., Qin, Y., Kan, J., & Liu, J. (2019). Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packag Shelf Life; 22:100417.
  • [78] Youssef, A.M., El-Sayed, S.M., El-Sayed, H.S., Salama, H.H., & Dufresne, A. (2016). Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym; 151:9-19.
  • [79] Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., & Liu, J. (2019). Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids; 94:80-92.
  • [80] Akbar, A., & Anal, A.K. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhi-murium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control; 38:88-95.
  • [81] Moghimi, R., Aliahmadi, A., & Rafati, H. (2017). Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydr Polym; 175:241-8.
  • [82] Min, S., Harris, L.J., & Krochta, J.M. (2005). Antimicrobial Effects of Lactoferrin, Lysozyme, and the Lactoperoxidase System and Edible Whey Protein Films Incorporating the Lactoperoxidase System Against *Salmonella enterica* and *Escherichia coli* O157:H7. J Food Sci; 70:m332-m8.
  • [83] Ezati, P., & Rhim, J-W. (2020). pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applica-tions. Food Hydrocolloids; 102:105629.
  • [84] Amin, U., Khan, M.K.I., Maan, A.A., Nazir, A., Riaz, S., Khan, M.U., et al. (2022). Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag Shelf Life; 33:100903.
  • [85] Li, Y., Ying, Y., Zhou, Y., Ge, Y., Yuan, C., Wu, C., et al. (2019). A pH-indicating intelligent packaging composed of chitosan-purple potato extractions strengthened by surface-deacetylated chitin nanofibers. Inter J Bio Macromol; 127:376-84.
  • [86] Jamróz, E., Kulawik, P., Krzyściak, P., Talaga-Ćwiertnia, K., & Juszczak, L. (2019). Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. Inter J Bio Macromol; 122:745-57.
  • [87] Jung, J., Puligundla, P., & Ko, S. (2012). Proof-of-concept study of chitosan-based carbon dioxide indicator for food packaging applications. Food Chem; 135:2170-4.
  • [88] Pucci, A., Signori, F., Bizzarri, R., Bronco, S., Ruggeri, G., & Ciardelli, F. (2010). Threshold temperature luminescent indicators from biodegradable poly(lactic acid)/poly(butylene succinate) blends. J Mater Chem; 20:5843-52.
  • [89] Vu, C.H.T., & Won, K. (2014). Leaching-Resistant Carrageenan-Based Colorimetric Oxygen Indicator Films for Intelligent Food Packaging. J Agri Food Chem; 62:7263-7.
  • [90] Vo, T.-V., Dang, T.-H., & Chen, B.-H. (2019). Synthesis of Intelligent pH Indicative Films from Chitosan/Poly(vinyl alco-hol)/Anthocyanin Extracted from Red Cabbage. Polymers; 11.
  • [91] Sun, G., Chi, W., Zhang, C., Xu, S., Li, J., & Wang, L. (2019). Developing a green film with pH-sensitivity and antioxidant activity based on κ-carrageenan and hydroxypropyl methylcellulose incorporating Prunus maackii juice. Food Hydrocolloids; 94:345-53.
  • [92] Aghaei, Z., Emadzadeh, B., Ghorani, B., & Kadkhodaee, R. (2018). Cellulose Acetate Nanofibres Containing Alizarin as a Halo-chromic Sensor for the Qualitative Assessment of Rainbow Trout Fish Spoilage. Food Bioprocess Technol; 11:1087-95.
  • [93] Ardiyansyah, Apriliyanti, M.W., Wahyono, A., Fatoni, M., Poerwanto, B., & Suryaningsih, W. (2018). The Potency of betacya-nins extract from a peel of dragon fruits as a source of colourimetric indicator to develop intelligent packaging for fish freshness monitoring. IOP Conference Series: Earth and Environmental Science; 207:012038.
  • [94] Latos-Brozio, M., & Masek, A. (2020). The application of natural food colorants as indicator substances in intelligent biode-gradable packaging materials. Food Chem Toxicol; 135:110975.
  • [95] Huang, S., Xiong, Y., Zou, Y., Dong, Q., Ding, F., Liu, X., et al. (2019). A novel colorimetric indicator based on agar incorpo-rated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocolloids; 90:198-205.
  • [96] Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr Polym; 222:115030.
  • [97] Ding, L., Li, X., Hu, L., Zhang, Y., Jiang, Y., Mao, Z., et al. (2020). A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydr Polym; 233:115859.
  • [98] Wan, X., He, Q., Wang, X., Liu, M., Lin, S., Shi, R., et al. (2021). Water-soluble chitosan-based indicator label membrane and its response behavior to carbon dioxide. Food Control; 130:108355.
  • [99] Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2019). A pH and NH3 sensing intelligent film based on Artemisia sphaerocepha-la Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hy-drocolloids; 87:858-68.
  • [100] Wu, S., Wang, W., Yan, K., Ding, F., Shi, X., Deng, H., et al. (2018). Electrochemical writing on edible polysaccharide films for intelligent food packaging. Carbohydr Polym; 186:236-42.
  • [101] Kato Jr, E.T., Yoshida, C.M.P., Reis, A.B., Melo, I.S., & Franco, T.T. (2011). Fast detection of hydrogen sulfide using a biodegradable colorimetric indicator system. Polymer International; 60:951-6.
  • [102] Sukhavattanakul, P., & Manuspiya, H. (2020). Fabrication of hybrid thin film based on bacterial cellulose nanocrystals and metal nanoparticles with hydrogen sulfide gas sensor ability. Carbohydr Polym; 230:115566.
  • [103] Arnon-Rips, H., Sabag, A., Tepper-Bamnolker, P., Chalupovich, D., Levi-Kalisman, Y., Eshel, D., et al. (2020). Effective suppression of potato tuber sprouting using polysaccharide-based emulsified films for prolonged release of citral. Food Hydrocol-loids; 103:105644.
  • [104] Ezati, P., Khan, A., Priyadarshi, R., Bhattacharya, T., Tammina, S.K., & Rhim, J-W. (2023). Biopolymer-based UV protec-tion functional films for food packaging. Food Hydrocolloids; 142:108771.
  • [105] Koirala, P., Nirmal, N.P., Woraprayote, W., Visessanguan, W., Bhandari, Y., Karim, N.U., et al. (2023). Nano-engineered edible films and coatings for seafood products. Food Packag Shelf Life; 38:101135.
  • [106] Yu, Y., Zheng, J., Li, J., Lu, L., Yan, J., Zhang, L., et al. (2021). Applications of two-dimensional materials in food packaging. Trends in Food Sci Technol; 110:443-57.
  • [107] Channa, I.A., Ashfaq, J., Siddiqui, M.A., Chandio, A.D., Shar, M.A., & Alhazaa, A. (2022). Multi-Shaded Edible Films Based on Gelatin and Starch for the Packaging Applications. Polymers [Internet]; 14.
  • [108] Gascon, M. (2007). Masking agents for use in foods. In: editor^editors (Ed.), Modifying Flavour in Food: Woodhead Pub-lishing; 232-42.
  • [109] Gaikwad, K.K., Singh, S., & Lee, Y.S. (2018). Oxygen scavenging films in food packaging. Emerg Conta; 16:523-38.
  • [110] Rhim, J-W. (2004). Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Sci and Tech-nol; 37:323-30.
  • [111] Liu, C., Huang, J., Zheng, X., Liu, S., Lu, K., Tang, K., et al. (2020). Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag Shelf Life; 24:100485.
  • [112] Lu, Y., Luo, Q., Chu, Y., Tao, N., Deng, S., Wang, L., et al. (2022). Application of Gelatin in Food Packaging: A Review. Polymers [Internet]; 14.
  • [113] Putranto, A.W., Sakhbani, M.M., Khoir, N.H., Mutiarani, N., Susilo, B., & Herman to, M.B. (2021). Design and perfor-mance evaluation of edible film printing machine based on automatic casting knife. IOP Conference Series: Earth and Environ-mental Science; 733:012006.
  • [114] Liu, B.-Y., Xue, C.-H., An, Q.-F., Jia, S.-T., & Xu, M.-M. (2019). Fabrication of superhydrophobic coatings with edible materials for super-repelling non-Newtonian liquid foods. Chem Eng J; 371:833-41.
  • [115] Huang, S., Wang, G., Lin, H., Xiong, Y., Liu, X., & Li, H. (2021). Preparation and dynamic response properties of colori-metric indicator films containing pH-sensitive anthocyanins. Sensors and Actuators Reports; 3:100049.
  • [116] Wang, Q., Chen, W., Zhu, W., McClements, D.J., Liu, X., & Liu, F. (2022). A review of multilayer and composite films and coatings for active biodegradable packaging. npj Sci of Food; 6:18.
  • [117] Ordoñez, R., Atarés, L., & Chiralt, A. (2022). Biodegradable active materials containing phenolic acids for food packaging applications. Compr Rev Food Sci Food Safe; 21:3910-30.
  • [118] Sothornvit, R., & Krochta, J.M. (2005). Plasticizers in edible films and coatings. In: Innovations in Food Packaging: Aca-demic Press; 403-33.
  • [119] Bhatia, S., Al-Harrasi, A., Al-Azri, M.S., Ullah, S., Makeen, H.A., Meraya, A.M., et al. (2022). Gallic Acid Crosslinked Gela-tin and Casein Based Composite Films for Food Packaging Applications. Polymers; 14.
There are 119 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Reviews
Authors

Abdul Mueez Ahmad 0009-0009-1800-8354

Hassan Mehmood Sipra 0009-0003-8372-824X

Hafsa Hafsa 0009-0009-7843-6350

Early Pub Date December 11, 2024
Publication Date December 31, 2024
Submission Date October 13, 2024
Acceptance Date November 22, 2024
Published in Issue Year 2024 Volume: 3 Issue: 2

Cite

APA Ahmad, A. M., Sipra, H. M., & Hafsa, H. (2024). Biodegradable Films: Sustainable Solutions for Food Packaging Applications. Cukurova University Journal of Natural and Applied Sciences, 3(2), 65-78. https://doi.org/10.70395/cunas.1566145
AMA Ahmad AM, Sipra HM, Hafsa H. Biodegradable Films: Sustainable Solutions for Food Packaging Applications. CUNAS. December 2024;3(2):65-78. doi:10.70395/cunas.1566145
Chicago Ahmad, Abdul Mueez, Hassan Mehmood Sipra, and Hafsa Hafsa. “Biodegradable Films: Sustainable Solutions for Food Packaging Applications”. Cukurova University Journal of Natural and Applied Sciences 3, no. 2 (December 2024): 65-78. https://doi.org/10.70395/cunas.1566145.
EndNote Ahmad AM, Sipra HM, Hafsa H (December 1, 2024) Biodegradable Films: Sustainable Solutions for Food Packaging Applications. Cukurova University Journal of Natural and Applied Sciences 3 2 65–78.
IEEE A. M. Ahmad, H. M. Sipra, and H. Hafsa, “Biodegradable Films: Sustainable Solutions for Food Packaging Applications”, CUNAS, vol. 3, no. 2, pp. 65–78, 2024, doi: 10.70395/cunas.1566145.
ISNAD Ahmad, Abdul Mueez et al. “Biodegradable Films: Sustainable Solutions for Food Packaging Applications”. Cukurova University Journal of Natural and Applied Sciences 3/2 (December 2024), 65-78. https://doi.org/10.70395/cunas.1566145.
JAMA Ahmad AM, Sipra HM, Hafsa H. Biodegradable Films: Sustainable Solutions for Food Packaging Applications. CUNAS. 2024;3:65–78.
MLA Ahmad, Abdul Mueez et al. “Biodegradable Films: Sustainable Solutions for Food Packaging Applications”. Cukurova University Journal of Natural and Applied Sciences, vol. 3, no. 2, 2024, pp. 65-78, doi:10.70395/cunas.1566145.
Vancouver Ahmad AM, Sipra HM, Hafsa H. Biodegradable Films: Sustainable Solutions for Food Packaging Applications. CUNAS. 2024;3(2):65-78.