Research Article
BibTex RIS Cite
Year 2024, , 185 - 191, 28.07.2024
https://doi.org/10.17567/currresdentsci.1520420

Abstract

References

  • 1. Vouzara, T., Roussou, K., Nikolaidis, A. K., Tolidis, K., & Koulaouzidou, E. A. Organic Eluates Derived from Intermediate Restorative Dental Materials. Molecules. 2020; 25(7), 1593.
  • 2. Schwendicke F, Brouwer F, Schwendicke A, Paris S. Different materials for direct pulp capping: systematic review and meta-analysis and trial sequential analysis. Clin Oral Investig. 2016; 20(6):1121-1132.
  • 3. Giorgi, M. C. C., Hernandes, N. M. A. P., Sugii, M. M., Ambrosano, G. M. B., Marchi, G. M., Lima, D. A. N. L., & Aguiar, F. H. B. Influence of an intermediary base on the microleakage of simulated class II composite resin restorations. Operative Dentistry. 2014; 39(3), 301-307.
  • 4. Jang, E., Lee, J., Nam, S., Kwon, T., & Kim, H. Comparison of microleakage and compressive strength of different base materials. Journal Of The Korean Academy Of Pedtatric Dentistry. 2021; 48(2), 168-175.
  • 5. Giorgi, M. C. C., Hernandes, N. M. A. P., Sugii, M. M., Ambrosano, G. M. B., Marchi, G. M., Lima, D. A. N. L., & Aguiar, F. H. B. Influence of an intermediary base on the microleakage of simulated class II composite resin restorations. Operative Dentistry. 2014; 39(3), 301-307.
  • 6. Lachowski KM, Botta SB, Lascala CA, Matos AB, Sobral MA. Study of the radio-opacity of base and liner dental materials using a digital radiography system. Dentomaxillofac Radiol. 2013; 42: 20120153.
  • 7. I. Espelid, A.B. Tveit, R.L. Erickson, S.C. Keck, and E.A. Glasspoole, Dent. Mater. 1991; 7, 114.
  • 8. Yaylacı, A., Karaarslan, E. S., & Hatırlı, H. Evaluation of the radiopacity of restorative materials with different structures and thicknesses using a digital radiography system. Imaging Science in Dentistry. 2021; 51(3), 261.
  • 9. Yazkan, B. Surface degradation evaluation of different self‐adhesive restorative materials after prolonged energy drinks exposure. Journal of Esthetic and Restorative Dentistry. 2020; 32(7), 707-714.
  • 10. Dionysopoulos, D., Tolidis, K., Gerasimou, P., & Papadopoulos, C. Effect of filler composition of dental composite restorative materials on radiopacity in digital radiographic images. Polymer Composites. 2018; 39, E351-E357.
  • 11. de AQUINO, D. A. H., FERNANDES, Â., & JUNIOR, L. R. C. M. Quantifying and comparing the radiopacity of five bulk fill composites in digital dental radiographs–a contribution to human identification. Journal of Forensic Radiology and Imaging. 2019; 18, 20-23.
  • 12. Feiz, A., Sajedi, M., Jafari, N., & Swift, E. J. Evaluation of microleakage in Class II composite restorations: Bonded-base and bulk-fill techniques. Dental Research Journal. 2021; 18.
  • 13. Jang, E., Lee, J., Nam, S., Kwon, T., & Kim, H. Comparison of microleakage and compressive strength of different base materials. Journal Of The Korean Academy Of Pedtatric Dentistry. 2021; 48(2), 168-175.
  • 14. Dukic W, Delija B, Derossi D, Dadic I. Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J. 2012: 31: 47-53.
  • 15. Amirouche A, Mouzali M, Watts DC. Radiopacity evaluation of bis-GMA/TEGDMA/opaque mineral filler dental composites. J Appl Polym Sci. 2007;104(3):1632-1639.
  • 16. ESPELID, Ivar; TVEIT, Anne Bjørg. A comparison of radiographic occlusal and approximal caries diagnoses made by 240 dentists. Acta Odontologica Scandinavica, 2001, 59.5: 285-289.
  • 17. Amirouche, A.; Mouzali, M.; Watts, D. C. Radiopacity evaluation of Bis‐GMA/TEGDMA/opaque mineral filler dental composites. Journal of applied polymer science, 2007, 104.3: 1632-1639.
  • 18. Saridag, S., Helvacioglu-Yigit, D., Alniacik, G., & Özcan, M. Radiopacity measurements of direct and indirect resin composites at different thicknesses using digital image analysis. Dental Materials Journal. 2015; 34(1), 13-18.
  • 19. Dionysopoulos, Dimitrios, et al. Effects of shade and composition on radiopacity of dental composite restorative materials. Oral Radiology, 2017, 33.3: 178-186.
  • 20. MIR, Arash Poorsattar Bejeh; MIR, Morvarid Poorsattar Bejeh. Assessment of radiopacity of restorative composite resins with various target distances and exposure times and a modified aluminum step wedge. Imaging science in dentistry. 2012; 42.3: 163-167.
  • 21. Yaşa B, Kucukyilmaz E, Yasa E, Ertas ET. Comparative study of radiopacity of resin-based and glass ionomer-based bulk-fill restoratives using digital radiography. J Oral Sci 2015; 57: 79-85.
  • 22. Dündar, N., Kumbuloglu, O., Güneri, P., & Boyacıoğlu, H. Radiopacity of fiber-reinforced resins. Oral Radiology. 2011; 27(1), 87-91.
  • 23. Soares, C. J., Rosatto, C. M. P., Carvalho, V. F., Bicalho, A. A., Henriques, J. C. G., & Faria-e-Silva, A. L. Radiopacity and porosity of bulk-fill and conventional composite posterior restorations—digital X-ray analysis. Operative dentistry. 2017; 42(6), 616-625.
  • 24. Recen, D., & Yazkan, B. A comparative microleakage analysis of ion-releasing self-adherable materials. Journal of Stomatology. 2021; 74(4), 203-210.
  • 25. Peutzfeldt A, & Asmussen E. Determinants of in vitro gap formation of resin composites Journal of Dentistry. 2004; 32(2) 109-115.
  • 26. Kalmowicz, J., Phebus, J. G., Owens, B. M., Johnson, W. W., & King, G. T. Microleakage of class I and II composite resin restorations using a sonic-resin placement system. Operative dentistry. 2015; 40(6), 653-661.
  • 27. Tsujimoto, A., Barkmeier, W. W., Takamizawa, T., Latta, M. A., & Miyazaki, M. Influence of thermal cycling on flexural properties and simulated wear of computer-aided design/computer-aided manufacturing resin composites. Operative dentistry. 2017; 42(1), 101-110.
  • 28. Kini A, Shetty S, Bhat R, et al. Microleakage evaluation of an alka­ site restorative material: an in vitro dye penetration study. J Contemp Dent Pract. 2019; 20: 1315­1318.
  • 29. Belli, S., Orucoglu, H., Yildirim, C., & Eskitascioglu, G. The effect of fiber placement or flowable resin lining on microleakage in Class II adhesive restorations. Journal of Adhesive Dentistry. 2007; 9(2).
  • 30. Yazici AR, Ozgünaltay G. Microleakage of different resin composite types. Quintessence Int. 2004; 35:790-94.
  • 31. Shathi, I. J., Hossain, M., Gafur, M. A., Rana, M. S., & Alam, M. S. A comparative study of microleakage between giomer and ormocer restoration in class I cavity of first permanent premolar teeth in vivo. Bangabandhu Sheikh Mujib Medical University Journal. 2017; 10(4), 214-218.
  • 32. Garoushi, S. K., Hatem, M., Lassila, L. V., & Vallittu, P. K. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations. Acta Biomaterialia Odontologica Scandinavica. 2015; 1(1), 6-12.
  • 33. Kini A, Shetty S, Bhat R, et al. Microleakage evaluation of an alka­ site restorative material: an in vitro dye penetration study. J Con­ temp Dent Pract 2019; 20: 1315­1318.

Radiopacity and Microleakage Evaluation of Different Intermediate Materials

Year 2024, , 185 - 191, 28.07.2024
https://doi.org/10.17567/currresdentsci.1520420

Abstract

Objective: The aim of this study is to compare the radiopacities of different types of materials with indications for application as a base under restorations and the microleakage of the final restorations with these materials applied as bases.
Methods: Standart Class I cavities were prepared in 90 caries-free molar teeth. The cavities were randomly divided into 9 groups according to the type of intermediate material to be applied (n=10): 1. High flowable composite, 2. Low flowable composite, 3. Fiber reinforced composite, 4. Giomer, 5. Ormocer, 6. Alkasite, 7. Bioactive composite, 8. High viscosity glass ionomer, 9. Glass carbomer. The base materials in each group were applied to the cavity floor and restoration was completed using a nanohybrid composite resin and an universal adhesive system. To evaluate radiopacity, radiographic images were taken using direct digital system and mean gray values were measured with ImageJ software. To analyse microleakage, specimens were subjected to thermocycling, immersed in 2% methylene blue solution for 24 hours, sectioned buccolingually and leakage values observed on the half-piece surfaces were examined under a stereomicroscope and recorded. Data were analysed using One-way Analysis of Variance, Tukey HSD Test and Pearson Chi-Square with Bonferroni-corrected Z Test (p˂0.05).
Results: In terms of radiopacity, while alkasite and low flowable composite showed the highest radiopacity, glass carbomer gave the lowest (p<0.001). In terms of microleakage, High flowable composite, low flowable composite, ormocer, giomer and fiber reinforced composite showed similar (p<0.001) and lowest microleakage values, while glass carbomer exhibited the highest microleakage value (p<0.001).
Conclusions: Within the results of the present study, high flowable composite, giomer, ormocer and fiber-reinforced composite can be recommended to be applied under composite resins, since they give successful results in terms of microleakage and present radiographically sufficient radiopacity.

References

  • 1. Vouzara, T., Roussou, K., Nikolaidis, A. K., Tolidis, K., & Koulaouzidou, E. A. Organic Eluates Derived from Intermediate Restorative Dental Materials. Molecules. 2020; 25(7), 1593.
  • 2. Schwendicke F, Brouwer F, Schwendicke A, Paris S. Different materials for direct pulp capping: systematic review and meta-analysis and trial sequential analysis. Clin Oral Investig. 2016; 20(6):1121-1132.
  • 3. Giorgi, M. C. C., Hernandes, N. M. A. P., Sugii, M. M., Ambrosano, G. M. B., Marchi, G. M., Lima, D. A. N. L., & Aguiar, F. H. B. Influence of an intermediary base on the microleakage of simulated class II composite resin restorations. Operative Dentistry. 2014; 39(3), 301-307.
  • 4. Jang, E., Lee, J., Nam, S., Kwon, T., & Kim, H. Comparison of microleakage and compressive strength of different base materials. Journal Of The Korean Academy Of Pedtatric Dentistry. 2021; 48(2), 168-175.
  • 5. Giorgi, M. C. C., Hernandes, N. M. A. P., Sugii, M. M., Ambrosano, G. M. B., Marchi, G. M., Lima, D. A. N. L., & Aguiar, F. H. B. Influence of an intermediary base on the microleakage of simulated class II composite resin restorations. Operative Dentistry. 2014; 39(3), 301-307.
  • 6. Lachowski KM, Botta SB, Lascala CA, Matos AB, Sobral MA. Study of the radio-opacity of base and liner dental materials using a digital radiography system. Dentomaxillofac Radiol. 2013; 42: 20120153.
  • 7. I. Espelid, A.B. Tveit, R.L. Erickson, S.C. Keck, and E.A. Glasspoole, Dent. Mater. 1991; 7, 114.
  • 8. Yaylacı, A., Karaarslan, E. S., & Hatırlı, H. Evaluation of the radiopacity of restorative materials with different structures and thicknesses using a digital radiography system. Imaging Science in Dentistry. 2021; 51(3), 261.
  • 9. Yazkan, B. Surface degradation evaluation of different self‐adhesive restorative materials after prolonged energy drinks exposure. Journal of Esthetic and Restorative Dentistry. 2020; 32(7), 707-714.
  • 10. Dionysopoulos, D., Tolidis, K., Gerasimou, P., & Papadopoulos, C. Effect of filler composition of dental composite restorative materials on radiopacity in digital radiographic images. Polymer Composites. 2018; 39, E351-E357.
  • 11. de AQUINO, D. A. H., FERNANDES, Â., & JUNIOR, L. R. C. M. Quantifying and comparing the radiopacity of five bulk fill composites in digital dental radiographs–a contribution to human identification. Journal of Forensic Radiology and Imaging. 2019; 18, 20-23.
  • 12. Feiz, A., Sajedi, M., Jafari, N., & Swift, E. J. Evaluation of microleakage in Class II composite restorations: Bonded-base and bulk-fill techniques. Dental Research Journal. 2021; 18.
  • 13. Jang, E., Lee, J., Nam, S., Kwon, T., & Kim, H. Comparison of microleakage and compressive strength of different base materials. Journal Of The Korean Academy Of Pedtatric Dentistry. 2021; 48(2), 168-175.
  • 14. Dukic W, Delija B, Derossi D, Dadic I. Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J. 2012: 31: 47-53.
  • 15. Amirouche A, Mouzali M, Watts DC. Radiopacity evaluation of bis-GMA/TEGDMA/opaque mineral filler dental composites. J Appl Polym Sci. 2007;104(3):1632-1639.
  • 16. ESPELID, Ivar; TVEIT, Anne Bjørg. A comparison of radiographic occlusal and approximal caries diagnoses made by 240 dentists. Acta Odontologica Scandinavica, 2001, 59.5: 285-289.
  • 17. Amirouche, A.; Mouzali, M.; Watts, D. C. Radiopacity evaluation of Bis‐GMA/TEGDMA/opaque mineral filler dental composites. Journal of applied polymer science, 2007, 104.3: 1632-1639.
  • 18. Saridag, S., Helvacioglu-Yigit, D., Alniacik, G., & Özcan, M. Radiopacity measurements of direct and indirect resin composites at different thicknesses using digital image analysis. Dental Materials Journal. 2015; 34(1), 13-18.
  • 19. Dionysopoulos, Dimitrios, et al. Effects of shade and composition on radiopacity of dental composite restorative materials. Oral Radiology, 2017, 33.3: 178-186.
  • 20. MIR, Arash Poorsattar Bejeh; MIR, Morvarid Poorsattar Bejeh. Assessment of radiopacity of restorative composite resins with various target distances and exposure times and a modified aluminum step wedge. Imaging science in dentistry. 2012; 42.3: 163-167.
  • 21. Yaşa B, Kucukyilmaz E, Yasa E, Ertas ET. Comparative study of radiopacity of resin-based and glass ionomer-based bulk-fill restoratives using digital radiography. J Oral Sci 2015; 57: 79-85.
  • 22. Dündar, N., Kumbuloglu, O., Güneri, P., & Boyacıoğlu, H. Radiopacity of fiber-reinforced resins. Oral Radiology. 2011; 27(1), 87-91.
  • 23. Soares, C. J., Rosatto, C. M. P., Carvalho, V. F., Bicalho, A. A., Henriques, J. C. G., & Faria-e-Silva, A. L. Radiopacity and porosity of bulk-fill and conventional composite posterior restorations—digital X-ray analysis. Operative dentistry. 2017; 42(6), 616-625.
  • 24. Recen, D., & Yazkan, B. A comparative microleakage analysis of ion-releasing self-adherable materials. Journal of Stomatology. 2021; 74(4), 203-210.
  • 25. Peutzfeldt A, & Asmussen E. Determinants of in vitro gap formation of resin composites Journal of Dentistry. 2004; 32(2) 109-115.
  • 26. Kalmowicz, J., Phebus, J. G., Owens, B. M., Johnson, W. W., & King, G. T. Microleakage of class I and II composite resin restorations using a sonic-resin placement system. Operative dentistry. 2015; 40(6), 653-661.
  • 27. Tsujimoto, A., Barkmeier, W. W., Takamizawa, T., Latta, M. A., & Miyazaki, M. Influence of thermal cycling on flexural properties and simulated wear of computer-aided design/computer-aided manufacturing resin composites. Operative dentistry. 2017; 42(1), 101-110.
  • 28. Kini A, Shetty S, Bhat R, et al. Microleakage evaluation of an alka­ site restorative material: an in vitro dye penetration study. J Contemp Dent Pract. 2019; 20: 1315­1318.
  • 29. Belli, S., Orucoglu, H., Yildirim, C., & Eskitascioglu, G. The effect of fiber placement or flowable resin lining on microleakage in Class II adhesive restorations. Journal of Adhesive Dentistry. 2007; 9(2).
  • 30. Yazici AR, Ozgünaltay G. Microleakage of different resin composite types. Quintessence Int. 2004; 35:790-94.
  • 31. Shathi, I. J., Hossain, M., Gafur, M. A., Rana, M. S., & Alam, M. S. A comparative study of microleakage between giomer and ormocer restoration in class I cavity of first permanent premolar teeth in vivo. Bangabandhu Sheikh Mujib Medical University Journal. 2017; 10(4), 214-218.
  • 32. Garoushi, S. K., Hatem, M., Lassila, L. V., & Vallittu, P. K. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations. Acta Biomaterialia Odontologica Scandinavica. 2015; 1(1), 6-12.
  • 33. Kini A, Shetty S, Bhat R, et al. Microleakage evaluation of an alka­ site restorative material: an in vitro dye penetration study. J Con­ temp Dent Pract 2019; 20: 1315­1318.
There are 33 citations in total.

Details

Primary Language English
Subjects Restorative Dentistry
Journal Section Research Articles
Authors

Başak Yazkan This is me

Gözde Açikgöz This is me

Publication Date July 28, 2024
Submission Date September 28, 2022
Published in Issue Year 2024

Cite

AMA Yazkan B, Açikgöz G. Radiopacity and Microleakage Evaluation of Different Intermediate Materials. Curr Res Dent Sci. July 2024;34(3):185-191. doi:10.17567/currresdentsci.1520420

Current Research in Dental Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

29936