Research Article
BibTex RIS Cite

DENTAL İMPLANT PLANLAMASINA KLAVUZLUK ETMESİ İÇİN ALT ÇENE MOLAR DİŞ BÖLGESİ MORFOLOJİSİNİN KONİK IŞINLI BİLGİSAYARLI TOMOGRAFİ İLE DEĞERLENDİRİLMESİ: RETROSPEKTİF RADYOANATOMİK ÇALIŞMA

Year 2022, Volume: 32 Issue: 1, 5 - 10, 15.02.2022
https://doi.org/10.17567/ataunidfd.1019539

Abstract

Amaç: Mevcut çalışmanın amacı dental implant planlamalarına yardımcı olmak için alt çene birinci molar diş bölgesindeki kemik morfolojisinin değerlendirilmesidir. Gereç ve Yöntem: Çalışmada toplam 109 adet hastanın konik ışınlı bilgisayarlı tomografi (KIBT) görüntüsü kullanıldı ve 200 adet mandibular birinci molar diş bölgesi değerlendirildi. Lingual konkavite varlığı, implant planlamasına etki eden andırkat varlığı, kanal kortikalizasyonu, kanal pozisyonu ve kemik kalitesi gibi parametreler incelendi. Ayrıca kemik genişliği, yüksekliği, konkavite olan vakalarda konkavite açısı ve derinliği gibi ölçümler kayıt altına alındı. Ölçümlerin yaş, cinsiyet, çene yönü (sağ/sol), diş mevcudiyet durumuna göre değişimleri istatistiksel olarak analiz edildi. Bulgular: Lingual konkavite varlığı, implant uygunluk durumu, kanal kortikalizasyonu, kanal pozisyonu ve kemik kalitesinin cinsiyet, çene yönü ve diş mevcudiyeti durumuna göre değişimi incelendiğinde sadece konkavite mevcudiyetinin dişli hastalarda dişsiz hastalara göre istatistiksel anlamlı yüksek izlendiği görüldü (p=0,018). Ayrıca kemik genişliğinin diş mevcudiyeti durumuna göre, kemik yüksekliğinin ise hem cinsiyet hem de diş mevcudiyeti durumuna göre istatistiksel anlamlı ortalamalar gösterdiği bulundu (p<0,001). Konkavite açısı cinsiyet, çene yönü ve diş mevcudiyetinden bağımsızdı (p>0,05), buna rağmen konkavite derinliği kadınlarda erkeklere göre istatistiksel olarak anlamlı yüksek bulundu (p=0,013). Yaşla konkavite açısı ve derinliği arasında bir korelasyon yokken (p>0,05), yaşla kemik kalınlığı ve yüksekliği arasında ters yönlü bir korelasyon mevcuttu (p<0,05). Sonuç: Çalışmanın sonuçlarında kadınlarda, dişsizlik vakalarında ve ileri yaşlarda kemik hacminin daha az seyrettiği ve kadınlarda konkavite derinliğinin daha fazla olduğu görülmektedir. Tüm bu sonuçlar, implant planlaması öncesi tüm hastaların 3 boyutlu görüntüleme yöntemleri ile ayrıntılı analiz edilmesi gerekliliğini bir kez daha göstermektedir. Hekimlerin bu konuda farkındalıkları arttırılmalıdır.
Anahtar Kelimeler: implant, KIBT, mandibula, radyoloji
ABSTRACT
Aim: The aim of this study is to evaluate the bone morphology in the mandibular first molar region to assist in dental implant planning. Material and Methods: In the study, cone beam computed tomography (CBCT) images of a total of 109 patients were used and 200 mandibular first molar tooth regions were evaluated. Parameters such as the presence of lingual concavity, the presence of an undercuts affecting implant planning, canal corticalization, canal position and bone quality were examined. In addition, measurements such as bone thickness, height, and concavity angle and depth in cases with concavity were recorded. The changes in the measurements according to age, gender, jaw direction (right/left), and tooth presence were statistically analyzed. Results: When the presence of lingual concavity, implant compatibility status, canal corticalization, canal position and bone quality according to gender, jaw direction and tooth presence were examined, it was observed that only the presence of concavity was statistically significantly higher in toothed patients (p=0.018). Also, it was found that the bone width showed statistically significant averages according to the presence of teeth, and the bone height showed statistically significant averages according to both gender and tooth presence (p<0.001). Concavity angle was independent of gender, jaw direction and tooth presence (p<0.05), however, the depth of concavity was found to be statistically significantly higher in women than in men (p=0.013). There was no correlation between age and concavity angle and depth (p>0.05), however, an negative correlation was observed between age and bone thickness and height (p<0.05). Conclusion: In the results of the study, it is seen that the bone volume is less in women, in edentulous cases and in advanced ages, and the depth of concavity is higher in women. All these results show once again the necessity of detailed analysis of all patients with 3D imaging methods before implant planning. Dentists awareness of this issue should be increased. Keywords: implant, CBCT, mandible, radiology

References

  • 1. Ramaswamy P, Saikiran C, Raju BM, Swathi M, Teja DD. Evaluation of the depth of submandibular gland fossa and its correlation with mandibular canal in vertical and horizontal locations using CBCT. J Indian Acad Oral Med Radiol. 2020;32(1):22.
  • 2. Kamburoğlu K, Acar B, Yüksel S, Paksoy CS. CBCT quantitative evaluation of mandibular lingual concavities in dental implant patients. Surg Radiol Anat. 2015;37(10):1209-1215.
  • 3. de Souza LA, Assis NMSP, Ribeiro RA, Carvalho ACP, Devito KL. Assessment of mandibular posterior regional landmarks using cone-beam computed tomography in dental implant surgery. Ann Anat. 2016;205:53-59.
  • 4. Herranz-Aparicio J, Marques J, Almendros-Marqués N, Gay-Escoda C. Retrospective study of the bone morphology in the posterior mandibular region. Evaluation of the prevalence and the degree of lingual concavity and their possible complications. Med Oral Patol Oral Cir Bucal. 2016;21(6):e731.
  • 5. Bayrak S, Demirturk-Kocasarac H, Yaprak E, Ustaoglu G, Noujeim M. Correlation between the visibility of submandibular fossa and mandibular canal cortication on panoramic radiographs and submandibular fossa depth on CBCT. Med Oral Patol Oral Cir Bucal. 2018;23(1):e105.
  • 6. Yoon TY, Patel M, Michaud RA, Manibo AM. Cone beam computerized tomography analysis of the posterior and anterior mandibular lingual concavity for dental implant patients. J Oral Implantol. 2017;43(1):12-18.
  • 7. Nickenig H-J, Wichmann M, Eitner S, Zöller JE, Kreppel M. Lingual concavities in the mandible: a morphological study using cross-sectional analysis determined by CBCT. J Craniomaxillofac Surg. 2015;43(2):254-259.
  • 8. Watanabe H, Abdul MM, Kurabayashi T, Aoki H. Mandible size and morphology determined with CT on a premise of dental implant operation. Surg Radiol Anat. 2010;32(4):343-349.
  • 9. Borahan APMO, Pekiner FN. Assesment of submandibular fossa depth using cone beam computed tomography. 7tepeklinik. 2018;1:2.
  • 10. Parnia F, Fard EM, Mahboub F, Hafezeqoran A, Gavgani FE. Tomographic volume evaluation of submandibular fossa in patients requiring dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(1):e32-e36.
  • 11. Branemark PI. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1-132.
  • 12. Pauwels R. History of dental radiography: Evolution of 2D and 3D imaging modalities. Med Phys Int. 2020;8:235-277.
  • 13. Güngör AGDH, Holoğlu DB, Duymuş ZY. Dişhekimlerinin Dental İmplant Planlamasında Kullanılan Radyografi Teknikleri Konusundaki Tercihlerinin Değerlendirilmesi. Atatürk Üniv Diş Hek Fak Derg. 2008(2):60-65.
  • 14. Pedroso LADM, Garcia RR, Leles JLR, Leles CR, Silva MAGS. Impact of cone-beam computed tomography on implant planning and on prediction of implant size. Braz Oral Res. 2013;28:46-53.
  • 15. Lascala C, Panella J, Marques M. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33(5):291-294.
  • 16. Worthington P, Rubenstein J, Hatcher DC. The role of cone-beam computed tomography in the planning and placement of implants. J Am Dent Assoc. 2010;141:19S-24S.
  • 17. Correa LR, Spin-Neto R, Stavropoulos A, Schropp L, da Silveira HED, Wenzel A. Planning of dental implant size with digital panoramic radiographs, CBCT-generated panoramic images, and CBCT cross-sectional images. Clin Oral Implants Res. 2014;25(6):690-695.
  • 18. Fokas G, Vaughn VM, Scarfe WC, Bornstein MM. Accuracy of linear measurements on CBCT images related to presurgical implant treatment planning: A systematic review. Clin Oral Implants Res. 2018;29(Suppl 16):393-415.
  • 19. Bornstein MM, Brügger OE, Janner S, et al. Indications and frequency for the use of cone beam computed tomography for implant treatment planning in a specialty clinic. Int J Oral Maxillofac Implants. 2015;30(5):1076-1083.
  • 20. Dubois L, De Lange J, Baas E, Van Ingen J. Excessive bleeding in the floor of the mouth after endosseus implant placement: a report of two cases. Int J Oral Maxillofac Surg. 2010;39(4):412-415.
  • 21. Tomljenovic B, Herrmann S, Filippi A, Kühl S. Life-threatening hemorrhage associated with dental implant surgery: a review of the literature. Clin Oral Implants Res. 2016;27(9):1079-1084.
  • 22. Loukas M, Kinsella Jr CR, Kapos T, Tubbs RS, Ramachandra S. Anatomical variation in arterial supply of the mandible with special regard to implant placement. Int J Oral Maxillofac Surg. 2008;37(4):367-371.
  • 23. Chan HL, Benavides E, Yeh CY, Fu JH, Rudek IE, Wang HL. Risk assessment of lingual plate perforation in posterior mandibular region: a virtual implant placement study using cone-beam computed tomography. J Periodontol. 2011;82(1):129-135.
  • 24. Uchida Y, Goto M, Danjo A, Yamashita Y, Kuraoka A. Anatomic measurement of the depth and location of the sublingual fossa. Int J Oral Maxillofac Surg. 2012;41(12):1571-1576.
  • 25. Braut V, Bornstein MM, Kuchler U, Buser D. Bone dimensions in the posterior mandible: a retrospective radiographic study using cone beam computed tomography. Part 2—analysis of edentulous sites. Int J Periodontics Restorative Dent. 2014;34(5):639-647.
  • 26. Renton T, Dawood A, Shah A, Searson L, Yilmaz Z. Post-implant neuropathy of the trigeminal nerve. A case series. Br Dent J. 2012;212(11):E17-E17.
  • 27. Renton T, Yilmaz Z. Profiling of patients presenting with posttraumatic neuropathy of the trigeminal nerve. J Orofac Pain. 2011;25(4):333.
  • 28. Chan HL, Brooks SL, Fu JH, Yeh CY, Rudek I, Wang HL. Cross-sectional analysis of the mandibular lingual concavity using cone beam computed tomography. Clin Oral Implants Res. 2011;22(2):201-206.
  • 29. Kawashima Y, Sakai O, Shosho D, Kaneda T, Gohel A. Proximity of the mandibular canal to teeth and cortical bone. J Endod. 2016;42(2):221-224.
  • 30. López-Cedrún JL. Implant rehabilitation of the edentulous posterior atrophic mandible: the sandwich osteotomy revisited. Int J Oral Maxillofac Implants. 2011;26(1):195-202.
  • 31. Bilhan H, Geçkili O, Mumcu E, Bozdag E, Sünbüloğlu E, Kutay O. Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone. J Oral Rehabil. 2010;37(12):900-907.
  • 32. Sagat G, Yalcin S, Gultekin BA, Mijiritsky E. Influence of arch shape and implant position on stress distribution around implants supporting fixed full-arch prosthesis in edentulous maxilla. Implant Dent. 2010;19(6):498-508.
  • 33. Quirynen M, Mraiwa N, Van Steenberghe D, Jacobs R. Morphology and dimensions of the mandibular jaw bone in the interforaminal region in patients requiring implants in the distal areas. Clin Oral Implants Res. 2003;14(3):280-285.
  • 34. Turkyilmaz I, Tözüm T, Tumer C. Bone density assessments of oral implant sites using computerized tomography. J Oral Rehabil. 2007;34(4):267-272.
  • 35. von Wowern N. General and oral aspects of osteoporosis: a review. Clin Oral Investig. 2001;5(2):71-82.
  • 36. Panjnoush M, Eil N, Kheirandish Y, Mofidi N, Shamshiri AR. Evaluation of the concavity depth and inclination in jaws using CBCT. Caspian J Dent Res. 2016;5(2):17-23.
  • 37. Nilsun B, Canan B, Evren H, Kaan O. Cone-beam computed tomography evaluation of the submandibular fossa in a group of dental implant patients. Implant Dent. 2019;28(4):329-339.
  • 38. Panchbhai AS. Quantitative estimation of vertical heights of maxillary and mandibular jawbones in elderly dentate and edentulous subjects. Spec Care Dentist. 2013;33(2):62-69.
Year 2022, Volume: 32 Issue: 1, 5 - 10, 15.02.2022
https://doi.org/10.17567/ataunidfd.1019539

Abstract

References

  • 1. Ramaswamy P, Saikiran C, Raju BM, Swathi M, Teja DD. Evaluation of the depth of submandibular gland fossa and its correlation with mandibular canal in vertical and horizontal locations using CBCT. J Indian Acad Oral Med Radiol. 2020;32(1):22.
  • 2. Kamburoğlu K, Acar B, Yüksel S, Paksoy CS. CBCT quantitative evaluation of mandibular lingual concavities in dental implant patients. Surg Radiol Anat. 2015;37(10):1209-1215.
  • 3. de Souza LA, Assis NMSP, Ribeiro RA, Carvalho ACP, Devito KL. Assessment of mandibular posterior regional landmarks using cone-beam computed tomography in dental implant surgery. Ann Anat. 2016;205:53-59.
  • 4. Herranz-Aparicio J, Marques J, Almendros-Marqués N, Gay-Escoda C. Retrospective study of the bone morphology in the posterior mandibular region. Evaluation of the prevalence and the degree of lingual concavity and their possible complications. Med Oral Patol Oral Cir Bucal. 2016;21(6):e731.
  • 5. Bayrak S, Demirturk-Kocasarac H, Yaprak E, Ustaoglu G, Noujeim M. Correlation between the visibility of submandibular fossa and mandibular canal cortication on panoramic radiographs and submandibular fossa depth on CBCT. Med Oral Patol Oral Cir Bucal. 2018;23(1):e105.
  • 6. Yoon TY, Patel M, Michaud RA, Manibo AM. Cone beam computerized tomography analysis of the posterior and anterior mandibular lingual concavity for dental implant patients. J Oral Implantol. 2017;43(1):12-18.
  • 7. Nickenig H-J, Wichmann M, Eitner S, Zöller JE, Kreppel M. Lingual concavities in the mandible: a morphological study using cross-sectional analysis determined by CBCT. J Craniomaxillofac Surg. 2015;43(2):254-259.
  • 8. Watanabe H, Abdul MM, Kurabayashi T, Aoki H. Mandible size and morphology determined with CT on a premise of dental implant operation. Surg Radiol Anat. 2010;32(4):343-349.
  • 9. Borahan APMO, Pekiner FN. Assesment of submandibular fossa depth using cone beam computed tomography. 7tepeklinik. 2018;1:2.
  • 10. Parnia F, Fard EM, Mahboub F, Hafezeqoran A, Gavgani FE. Tomographic volume evaluation of submandibular fossa in patients requiring dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(1):e32-e36.
  • 11. Branemark PI. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1-132.
  • 12. Pauwels R. History of dental radiography: Evolution of 2D and 3D imaging modalities. Med Phys Int. 2020;8:235-277.
  • 13. Güngör AGDH, Holoğlu DB, Duymuş ZY. Dişhekimlerinin Dental İmplant Planlamasında Kullanılan Radyografi Teknikleri Konusundaki Tercihlerinin Değerlendirilmesi. Atatürk Üniv Diş Hek Fak Derg. 2008(2):60-65.
  • 14. Pedroso LADM, Garcia RR, Leles JLR, Leles CR, Silva MAGS. Impact of cone-beam computed tomography on implant planning and on prediction of implant size. Braz Oral Res. 2013;28:46-53.
  • 15. Lascala C, Panella J, Marques M. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33(5):291-294.
  • 16. Worthington P, Rubenstein J, Hatcher DC. The role of cone-beam computed tomography in the planning and placement of implants. J Am Dent Assoc. 2010;141:19S-24S.
  • 17. Correa LR, Spin-Neto R, Stavropoulos A, Schropp L, da Silveira HED, Wenzel A. Planning of dental implant size with digital panoramic radiographs, CBCT-generated panoramic images, and CBCT cross-sectional images. Clin Oral Implants Res. 2014;25(6):690-695.
  • 18. Fokas G, Vaughn VM, Scarfe WC, Bornstein MM. Accuracy of linear measurements on CBCT images related to presurgical implant treatment planning: A systematic review. Clin Oral Implants Res. 2018;29(Suppl 16):393-415.
  • 19. Bornstein MM, Brügger OE, Janner S, et al. Indications and frequency for the use of cone beam computed tomography for implant treatment planning in a specialty clinic. Int J Oral Maxillofac Implants. 2015;30(5):1076-1083.
  • 20. Dubois L, De Lange J, Baas E, Van Ingen J. Excessive bleeding in the floor of the mouth after endosseus implant placement: a report of two cases. Int J Oral Maxillofac Surg. 2010;39(4):412-415.
  • 21. Tomljenovic B, Herrmann S, Filippi A, Kühl S. Life-threatening hemorrhage associated with dental implant surgery: a review of the literature. Clin Oral Implants Res. 2016;27(9):1079-1084.
  • 22. Loukas M, Kinsella Jr CR, Kapos T, Tubbs RS, Ramachandra S. Anatomical variation in arterial supply of the mandible with special regard to implant placement. Int J Oral Maxillofac Surg. 2008;37(4):367-371.
  • 23. Chan HL, Benavides E, Yeh CY, Fu JH, Rudek IE, Wang HL. Risk assessment of lingual plate perforation in posterior mandibular region: a virtual implant placement study using cone-beam computed tomography. J Periodontol. 2011;82(1):129-135.
  • 24. Uchida Y, Goto M, Danjo A, Yamashita Y, Kuraoka A. Anatomic measurement of the depth and location of the sublingual fossa. Int J Oral Maxillofac Surg. 2012;41(12):1571-1576.
  • 25. Braut V, Bornstein MM, Kuchler U, Buser D. Bone dimensions in the posterior mandible: a retrospective radiographic study using cone beam computed tomography. Part 2—analysis of edentulous sites. Int J Periodontics Restorative Dent. 2014;34(5):639-647.
  • 26. Renton T, Dawood A, Shah A, Searson L, Yilmaz Z. Post-implant neuropathy of the trigeminal nerve. A case series. Br Dent J. 2012;212(11):E17-E17.
  • 27. Renton T, Yilmaz Z. Profiling of patients presenting with posttraumatic neuropathy of the trigeminal nerve. J Orofac Pain. 2011;25(4):333.
  • 28. Chan HL, Brooks SL, Fu JH, Yeh CY, Rudek I, Wang HL. Cross-sectional analysis of the mandibular lingual concavity using cone beam computed tomography. Clin Oral Implants Res. 2011;22(2):201-206.
  • 29. Kawashima Y, Sakai O, Shosho D, Kaneda T, Gohel A. Proximity of the mandibular canal to teeth and cortical bone. J Endod. 2016;42(2):221-224.
  • 30. López-Cedrún JL. Implant rehabilitation of the edentulous posterior atrophic mandible: the sandwich osteotomy revisited. Int J Oral Maxillofac Implants. 2011;26(1):195-202.
  • 31. Bilhan H, Geçkili O, Mumcu E, Bozdag E, Sünbüloğlu E, Kutay O. Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone. J Oral Rehabil. 2010;37(12):900-907.
  • 32. Sagat G, Yalcin S, Gultekin BA, Mijiritsky E. Influence of arch shape and implant position on stress distribution around implants supporting fixed full-arch prosthesis in edentulous maxilla. Implant Dent. 2010;19(6):498-508.
  • 33. Quirynen M, Mraiwa N, Van Steenberghe D, Jacobs R. Morphology and dimensions of the mandibular jaw bone in the interforaminal region in patients requiring implants in the distal areas. Clin Oral Implants Res. 2003;14(3):280-285.
  • 34. Turkyilmaz I, Tözüm T, Tumer C. Bone density assessments of oral implant sites using computerized tomography. J Oral Rehabil. 2007;34(4):267-272.
  • 35. von Wowern N. General and oral aspects of osteoporosis: a review. Clin Oral Investig. 2001;5(2):71-82.
  • 36. Panjnoush M, Eil N, Kheirandish Y, Mofidi N, Shamshiri AR. Evaluation of the concavity depth and inclination in jaws using CBCT. Caspian J Dent Res. 2016;5(2):17-23.
  • 37. Nilsun B, Canan B, Evren H, Kaan O. Cone-beam computed tomography evaluation of the submandibular fossa in a group of dental implant patients. Implant Dent. 2019;28(4):329-339.
  • 38. Panchbhai AS. Quantitative estimation of vertical heights of maxillary and mandibular jawbones in elderly dentate and edentulous subjects. Spec Care Dentist. 2013;33(2):62-69.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Research Articles
Authors

Sevda Kurt Bayrakdar This is me 0000-0002-3711-6520

Elif Bilgir This is me 0000-0001-9521-4682

Publication Date February 15, 2022
Submission Date September 6, 2021
Published in Issue Year 2022 Volume: 32 Issue: 1

Cite

AMA Kurt Bayrakdar S, Bilgir E. DENTAL İMPLANT PLANLAMASINA KLAVUZLUK ETMESİ İÇİN ALT ÇENE MOLAR DİŞ BÖLGESİ MORFOLOJİSİNİN KONİK IŞINLI BİLGİSAYARLI TOMOGRAFİ İLE DEĞERLENDİRİLMESİ: RETROSPEKTİF RADYOANATOMİK ÇALIŞMA. Curr Res Dent Sci. February 2022;32(1):5-10. doi:10.17567/ataunidfd.1019539

Current Research in Dental Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

29936