Review
BibTex RIS Cite
Year 2023, Volume: 33 Issue: 2 - 2023, 33:2, 122 - 130, 14.07.2023
https://doi.org/10.17567/ataunidfd.994747

Abstract

References

  • 1. Anusavice KJ. Phillips’ Science of Dental Materials. 11 ed. St. Louis: 2003. p. 655-721.
  • 2. Shillingburg HT, Hobo S, Whitsett LD, Jacobi R, Brackett SE. Funda- mentals of Fixed Prosthodontics. 3 ed. London Quintessence Publis- hing Co. Inc: 1997. p. 433-55.
  • 3. Küçük BE, Kunt GE. Lityum disilikat seramikler. Atatürk Üniv Diş Hek Fak Derg 2012; 3: 123-131.
  • 4. Gehrt M, Wolfart S, Rafai N, Reich S, Edelhoff D. Clinical results of lit- hium-disilicate crowns after up to 9 years of service. Clin Oral Inves- tig. 2013; 17: 275-84. [Crossref]
  • 5. 5. Qualtrough A, Piddock V. Ceramics update. J Dent 1997; 25: 91-5.[Crossref]
  • 6. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture tou- ghness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent mater 2004; 20: 449-456. [Crossref]
  • 7. O’Brien WJ. Dental materials and their selection 4th. Quintessence Publishing 2002. p. 212-230.
  • 8. Can G, Ersoy E, Aksu LM. Diş Hekimliğinde Maddeler Bilgisi. Özyurt matbacılık, 2014, p. 210-4.
  • 9. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont, 2015; 28: 227-35. [Crossref]
  • 10. McLean JW. Evolution of dental ceramics in the twentieth century.Int J Prosthodont. 2001 ;85: 61-66. [Crossref]
  • 11. Peterson IM, Wuttiphan S, Lawn BR, Chyung K. Role of microstru- cture on contact damage and strength degradation of micaceous glass-ceramics. Dent Mater, 1998; 14: 80-89. [Crossref]
  • 12. Yavuzyılmaz H, Turhan B, Bavbek B, Kurt E. Full Porcelain Systems I. GÜ Dişhek Fak Derg 2005; 22: 41-44.
  • 13. Kelly JR. Dental ceramics: current thinking and trends. Dent Clin North Am. 2004; 48: 513-530. [Crossref]
  • 14. Sınmazışık G, Öveçoğlu ML. Physical properties and microstructural characterization of dental porcelains mixed with distilled water and modeling liquid. dent mater 2006; 22: 735-745. [Crossref
  • 15. Junpoom P, Kukiattrakoon B, Hengtrakool C. Flexural strength of fluo-rapatite-leucite and fuorapatite porcelains exposed to erosive agentsin cyclic immersion. J Appl Oral Sci. 2011; 19: 95-99. [Crossref]
  • 16. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent. 1996; 75: 18-32. [Crossref]
  • 17. Güngör MB, Nemli SK, Çağlar A, Aydın C, Yılmaz H. Clinical study on the success of posterior monolithic zirconia crowns and fixed dental prostheses: preliminary report. Acta Odontol Turcica. 2017; 34: 104- 108.
  • 18. Piconi C, Maccauro G, Muratori F, Del Prever EB. Alumina and zirconia ceramics in joint replacements. J Appl Biomater Biomech. 2003; 1: 19-32.
  • 19. Bultan Ö, Öngül D, Türkoğlu P. Zirkonyanın mikroyapılarına ve üretim şekillerine göre sınıflandırılması. J Istanb Univ Fac Dent. 2010; 44: 197-204.
  • 20. Ban S. Reliability and properties of core materials for all-ceramic dental restorations. Jpn Dent Sci Rev. 2008; 44: 3-21. [Crossref]
  • 21. Petrini M, Ferrante M, Su B. Fabrication and characterization of bio- mimetic ceramic/polymer composite materials for dental restorati- on. Dent Mater 2013; 29: 375-381. [Crossref]
  • 22. Pagniano Jr RP, Seghi RR, Rosenstiel SF, Wang R, Katsube N. The effe- ct of a layer of resin luting agent on the biaxial flexure strength of two all-ceramic systems. J Prosthet Dent. 2005; 93: 459-466. [Crossref]
  • 23. Höland W, Rheinberger V, Schweiger M. Control of nucleation in glass ceramics. Philos Trans A Math Phys Eng Sci. 2003; 36: 575- 589. [Crossref]
  • 24. Albakry M, Guazzato M, Swain MV. Biaxial flexural strength, elas- tic moduli, and x-ray diffraction characterization of three pres- sable all-ceramic materials. J Prosthet Dent. 2003; 89: 374-380. [Crossref]
  • 25. Sorensen JA. The IPS Empress 2 system: defining the possibilities. QDT (USA) 1999; 22: 153-163.
  • 26. Raigrodski AJ. Contemporary all-ceramic fixed partial dentures: a re- view Dent Clin North Am. 2004; 48: 531-544. [Crossref]
  • 27. Nakamura T, Ohyama T, Imanishi A, Nakamura T, Ishigaki S. Fracture resistance of pressable glass-ceramic fixed partial dentures. J Oral Rehabil. 2002; 29: 951-955. [Crossref]
  • 28. Schweiger M. IPS Empress 2: A new pressable high-strength glass-e- ramic for esthetic all-ceramic restorations. QDT (USA) 1999; 22: 143- 151.
  • 29. Martin JW. Stability of Microstructure in Metallic Systems. 2 ed. Cambridge University Press, Cambridge: 1997. p. 239-59. 30. Raptis NV, Michalakis KX, Hirayama H. Optical behavior of current ceramic systems. Int J Periodontics Restorative Dent. 2006; 26: 31- 41.
  • 31. IPS Empress and IPS Empress II Instructions for use, 1999.
  • 32. Ritter RG. Multifunctional Uses of a Novel Ceramic-Lithium Disilica- te. J Esthet Restor Dent. 2010; 22: 332-341. [Crossref]
  • 33. Ritter RG, Rego NA. Material considerations for using lithium disilica- te as a thin veneer option. J Cosmet Dent 2009; 25: 111-117.
  • 34. Ivoclar Vivadent, A. G. Scientific documentation IPS e. max® Press. Liechtenstein: Ivoclar Vivadent. 2005.
  • 35. Ivoclar Vivadent, A. G. The Compatible All-Ceramic System, Dental Technician and Instructor, Schaan, Liechtenstein. 2005.
  • 36. Stappert CF, Att W, Gerds T, Strub JR. Fracture resistance of different partial-coverage ceramic molar restorations: An in vitro investigati- on. J Am Dent Assoc. 2006; 137: 514-522. [Crossref]
  • 37. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent. 2002; 88: 4-9. [Crossref]
  • 38. Scientific Documentation: IPS Empress System. Researh and Deve- lopment Scientific Service; Ivoclar 2003.
  • 39. Fasbinder DJ, Dennison JB, Heys D, Neiva, G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns. J Am Dent Assoc. 2010; 141: 10S-4S. [Crossref]
  • 40. Giordano R. Materials for chairside CAD/CAM-produced restorations. J Am Den Assoc. 2006; 137: 14S-21S. [Crossref]
  • 41. Springall GA, Yin L. Response of pre-crystallized CAD/CAM zirconi- a-reinforced lithium silicate glass ceramic to cyclic nanoindentation. J Mech Behav Biomed Mater. 2019; 92: 58-70. [Crossref]
  • 42. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014; 93: 1235-1242. [Crossref]
  • 43. Springall GA, Yin L. Nano-scale mechanical behavior of pre-crystal- lized CAD/CAM zirconia-reinforced lithium silicate glass ceramic. J Mech Behav Biomed Mater. 2018; 82: 35-44. [Crossref]
  • 44. Nawafleh N, Hatamleh M, Elshiyab S, Mack F. Lithium disilicate resto- rations fatigue testing parameters: a systematic review. J Prostho- dont. 2016; 25: 116-126. [Crossref]
  • 45. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fractu- re Resistance of Lithium Disilicate--, Alumina-, and Zirconia-Based Three-Unit Fixed Partial Dentures: A Laboratory Study. Int J Prostho- dont. 2001; 14: 231-8.
  • 46. Johansson C, Kmet G, Rivera J, Larsson C, Vult von Steyern P. Frac- ture strength of monolithic all-ceramic crowns made of high trans- lucent yttrium oxide-stabilized zirconium dioxide compared to por- celain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014; 72: 145-153. [Crossref]
  • 47. Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disi- licate. J Prosthet Dent. 2018; 120: 132-137. [Crossref]
  • 48. de Kok P, Pereira GK, Fraga S, de Jager N, Venturini AB, Kleverlaan CJ. The effect of internal roughness and bonding on the fracture re- sistance and structural reliability of lithium disilicate ceramic. Dent Mater. 2017; 33: 1416-1425. [Crossref]
  • 49. Yoon HI, Sohn PJ, Jin S, Elani H, Lee, SJ. Fracture Resistance of CAD/ CAM-Fabricated Lithium Disilicate MOD Inlays and Onlays with Vari- ous Cavity Preparation Designs. J Prosthodont. 2019; 28: e524-e529. [Crossref]
  • 50. Rojpaibool T, Leevailoj C. Fracture resistance of lithium disilica- te ceramics bonded to enamel or dentin using different resin ce- ment types and film thicknesses. J Prosthodont. 2017; 26: 141-149. [Crossref]
  • 51. Nawafleh NA, Hatamleh MM, Öchsner A, Mack F. Fracture load and survival of anatomically representative monolithic lithium disilicate crowns with reduced tooth preparation and ceramic thickness. J Adv Prosthodont. 2017; 9: 416-422. [Crossref]
  • 52. Choi JW, Kim SY, Bae JH, Bae EB, Huh JB. In vitro study of the frac- ture resistance of monolithic lithium disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia for three-unit fixed dental prostheses. J Adv Prosthodont.2017; 9: 244-251. [Crossref] 53. Sagsoz O, Yildiz M, Ghahramanzadeh AH, Alsaran A. In vitro Frac- ture strength and hardness of different computer-aided design/ computer-aided manufacturing inlays. Niger J Clin Pract. 2018; 21: 380-387. 54. Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinfor- ced lithium silicate glass-ceramic. Dent Mater. 2016; 32: 908-914. [Crossref]
  • 55. Kim SY, Choi JW, Ju SW, Ahn JS, Yoon MJ, Huh, JB. Fracture Strength After Fatigue Loading of Lithium Disilicate Pressed Zirconia Crowns. Int J Prosthodont. 2016; 29: 369-371. [Crossref]
  • 56. Malkondu Ö, Tinastepe N, Akan, E, Kazazoğlu E. An overview of mo- nolithic zirconia in dentistry. Biotechnol Biotechnol Equip. 2016; 30: 644-652. [Crossref]
  • 57. Wolfart S, Eschbach S, Scherrer S, Kern, M. Clinical outcme of thre- e-unit lithium-disilicate glass-ceramic fixed dental prostheses: up to 8 years results. Dent Mater. 2009; 25: e63-e71. [Crossref]
  • 58. Reich S, Schierz, O. Chair-side generated posterior lithium disili- cate crowns after 4 years. Clinic Oral Investig. 2013; 17: 1765-1772. [Crossref]
  • 59. Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic re- view. J Prosthet Dent. 2014; 112: 22-30. [Crossref]
  • 60. Kern M, Sasse M, Wolfart S. Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc. 2012; 143: 234-240. [Crossref]
  • 61. Sulaiman TA, Delgado AJ, Donovan TE. Survival rate of lithium di- silicate restorations at 4 years: A retrospective study. J Prosthet Dent.2015; 114: 364-366. [Crossref]
  • 62. Edelhoff D, Güth JF, Erdelt K, Brix O, Liebermann A. Clinical perfor- mance of occlusal onlays made of lithium disilicate ceramic in pa- tients with severe tooth wear up to 11 years. Dent Mater. 2019; 35: 1319-1330. [Crossref]
  • 63. Aziz A, El-Mowafy O, Tenenbaum HC, Lawrence HP, Shokati, B. Clini- cal performance of chairside monolithic lithium disilicate glass-ce- ramic CAD-CAM crowns. J Esthet Restor Dent. 2019; 31: 613-619. [Crossref]
  • 64. Rauch A, Reich S, Schierz O. Chair-side generated posterior monolit- hic lithium disilicate crowns: clinical survival after 6 years. Clin Oral İnvestig. 2017; 21: 2083-2089. [Crossref]
  • 65. Abou-Steit S, ElGuindy J, Zaki A. Evaluation of patient satisfacti- on and shade matching of Vita Suprinity versus lithium disilicate (E-max) ceramic crowns in the esthetic zone: a randomized control- led clinical trial. F1000Research 2019; 8: 371. [Crossref]
  • 66. Malament KA, Margvelashvili-Malament M, Natto ZS, Thompson V, Rekow D, Att W. Comparison of 16.9-year survival of pressed acid et- ched e.max lithium disilicate glass ceramic complete and partial co- verage restorations in posterior teeth: Performance and outcomes as a function of tooth position, age, sex, and thickness of ceramic material. J Prosthet Dent. 2020. [Crossref]
  • 67. Scutella F, Weinstein T, Redaelli S, Cerutti A, Testori T, Özcan M. Relia- bility of Chair-side Monolithic CAD-CAM Generated Lithium Disilica- te Single Crowns with Knife- Edge Finish Line: Up to 5-Year Retros- pective Analysis of Clinical Performance. Eur J Prosthodont Restor Dent. 2020; 28: 94-97.
  • 68. Pecho OE, Ghinea R, Ionescu AM, de la Cruz Cardona J, Paravina RD, del Mar Pérez M. Color and translucency of zirconia ceramics, human dentine and bovine dentine. J Dent. [Crossref]
  • 69. Pires LA, Novais PM, Araújo VD, Pegoraro LF. Effects of the type and thickness of ceramic, substrate, and cement on the optical color of a lithium disilicate ceramic. J Prosthet Dent. 2017; 117 144-149. [Crossref]
  • 70. Chaiyabutr Y, Kois JC, LeBeau D, Nunokawa G. Effect of abutment to- oth color, cement color, and ceramic thickness on the resulting op- tical color of a CAD/CAM glass-ceramic lithium disilicate-reinforced crown. J Prosthet Dent. 2011; 105: 83-90. [Crossref]
  • 71. Niu E, Agustin M, Douglas RD. Color match of machinable lithium di- silicate ceramics: Effects of cement color and thickness. J Prosthet Dent 2014; 111: 42-50. [Crossref] 72. Czigola A, Abram E, Kovacs ZI, Marton K, Hermann P, Borbely J. Effe- cts of substrate, ceramic thickness, translucency, and cement shade on the color of CAD/CAM lithium-disilicate crowns. J Esthet Restor Dent. 2019; 31: 457-464. [Crossref]
  • 73. Habib DM. Effect of resin cement shades & thickness of zirconia rein- forced lithium disilicate ceramics (Vita Suprinity) on the optical pro- perties using dark background compared to lithium disilicate glass ceramics. CU Theses 2019.
  • 74. Mitov G, Heintze SD, Walz S, Woll K, Muecklich F, Pospiech P. Wear behavior of dental Y-TZP ceramic against natural enamel after diffe- rent finishing procedures. Dent Mater. 2012; 28: 909-918. [Crossref]
  • 75. Lawson NC, Janyavula S, Syklawer S, McLaren EA, Burgess JO. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. J Dent. 2014; 42: 1586-1591. [Crossref] 76. Kim MJ, Oh SH, Kim JH, Ju SW, Seo DG, Jun SH, Ryu JJ. Wear evalua- tion of the human enamel opposing different Y-TZP dental ceramics and other porcelains. J Dent. 2012; 40: 979-988. [Crossref]
  • 77. Preis V, Weiser F, Handel G, Rosentritt M. Wear performance of mo- nolithic dental ceramics with different surface treatments. Quintes- sence Int 2013; 44: 393-405.
  • 78. Tribst JPM, Alves LMM, Piva AMDOD, Melo RMD, Borges ALS, Pa- es-Junior TJA, Bottino MA. Reinforced Glass-ceramics: Parametric Inspection of Three-Dimensional Wear and Volumetric Loss after Chewing Simulation. Braz Dent J. 2019; 30: 505-510. [Crossref]
  • 79. Matzinger M, Hahnel S, Preis V, Rosentritt M. Polishing effects and wear performance of chairside CAD/CAM materials. Clin Oral İnves- tig. 2019; 23: 725-737. [Crossref]

Lityum Disilikat Seramiklerin Özellikleri ve Klinik Uygulamaları

Year 2023, Volume: 33 Issue: 2 - 2023, 33:2, 122 - 130, 14.07.2023
https://doi.org/10.17567/ataunidfd.994747

Abstract

Diş hekimliğinde eksik diş bölgelerinin, estetik ve fonksiyonel kaybını gidermek için sabit protetik restorasyon- lar, çokça tercih edilen bir tedavi türüdür. Bu yapılan restorasyonlarda hem ağız içi streslere, gelen kuvvetlere yeterli direncin elde edilmesi hem de arzu edilen estetiğin sağlanması, restorasyonda kullanılacak metaryale bağlıdır. Seramik sistemlerindeki gelişmeler, metal destekli seramiklerin yerini tam seramik restorasyonların yerini almasını bazı vakalarda olanaklı kılmıştır. Tam seramik sistemleri içinde lityum disilikat seramikler diğer seramik sistemlerine göre daha yüksek estetiğe sahip olması sebebiyle diş hekimleri tarafından daha çok tercih edilmektedir. Bu makalenin amacı, özellikle lityum disilikat seramikler ile ilgili güncel literatürleri taramak ve lityum disilikat materyalinin, mekanik ve optik özelliklerini gözden geçirmektir. Bu makale, taranan literatürle- rin analizlerinin bir özetini ve lityum disilikat materyalinin dental uygulamalardaki kullanımı için klinik öneriler sunmaktadır.
Anahtar Kelimeler: Lityum disikat, dental estetik, tam seramik restorasyonlar
ABSTRACT
In dentistry, fixed prosthetic restorations are a highly preferred type of treatment to eliminate the aesthetic and functional loss of missing tooth areas. In these restorations, both providing sufficient resistance to intracranial stresses, incoming forces and providing the desired aesthetics depend on the material to be used in the restoration. Advances in ceramic systems have made it possible for metal-ceramics to replace full ceramic restorations in some cases. In all ceramic systems, lithium disilicates ceramics are preferred by dentists because they have higher aesthetics than other ceramic systems. The purpose of this article is to review the literature on lithium disilicate ceramics, especially in recent years, and to review the mechanical and optical properties of lithium disilicate material. This article provides a summary of the analysis of the scanned literature and clinical recommendations for the use of lithium disilicate material in dental appli- cations.
Keywords: Lithium disilicate, dental aesthetics, full-ceramic restoration

References

  • 1. Anusavice KJ. Phillips’ Science of Dental Materials. 11 ed. St. Louis: 2003. p. 655-721.
  • 2. Shillingburg HT, Hobo S, Whitsett LD, Jacobi R, Brackett SE. Funda- mentals of Fixed Prosthodontics. 3 ed. London Quintessence Publis- hing Co. Inc: 1997. p. 433-55.
  • 3. Küçük BE, Kunt GE. Lityum disilikat seramikler. Atatürk Üniv Diş Hek Fak Derg 2012; 3: 123-131.
  • 4. Gehrt M, Wolfart S, Rafai N, Reich S, Edelhoff D. Clinical results of lit- hium-disilicate crowns after up to 9 years of service. Clin Oral Inves- tig. 2013; 17: 275-84. [Crossref]
  • 5. 5. Qualtrough A, Piddock V. Ceramics update. J Dent 1997; 25: 91-5.[Crossref]
  • 6. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture tou- ghness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent mater 2004; 20: 449-456. [Crossref]
  • 7. O’Brien WJ. Dental materials and their selection 4th. Quintessence Publishing 2002. p. 212-230.
  • 8. Can G, Ersoy E, Aksu LM. Diş Hekimliğinde Maddeler Bilgisi. Özyurt matbacılık, 2014, p. 210-4.
  • 9. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont, 2015; 28: 227-35. [Crossref]
  • 10. McLean JW. Evolution of dental ceramics in the twentieth century.Int J Prosthodont. 2001 ;85: 61-66. [Crossref]
  • 11. Peterson IM, Wuttiphan S, Lawn BR, Chyung K. Role of microstru- cture on contact damage and strength degradation of micaceous glass-ceramics. Dent Mater, 1998; 14: 80-89. [Crossref]
  • 12. Yavuzyılmaz H, Turhan B, Bavbek B, Kurt E. Full Porcelain Systems I. GÜ Dişhek Fak Derg 2005; 22: 41-44.
  • 13. Kelly JR. Dental ceramics: current thinking and trends. Dent Clin North Am. 2004; 48: 513-530. [Crossref]
  • 14. Sınmazışık G, Öveçoğlu ML. Physical properties and microstructural characterization of dental porcelains mixed with distilled water and modeling liquid. dent mater 2006; 22: 735-745. [Crossref
  • 15. Junpoom P, Kukiattrakoon B, Hengtrakool C. Flexural strength of fluo-rapatite-leucite and fuorapatite porcelains exposed to erosive agentsin cyclic immersion. J Appl Oral Sci. 2011; 19: 95-99. [Crossref]
  • 16. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent. 1996; 75: 18-32. [Crossref]
  • 17. Güngör MB, Nemli SK, Çağlar A, Aydın C, Yılmaz H. Clinical study on the success of posterior monolithic zirconia crowns and fixed dental prostheses: preliminary report. Acta Odontol Turcica. 2017; 34: 104- 108.
  • 18. Piconi C, Maccauro G, Muratori F, Del Prever EB. Alumina and zirconia ceramics in joint replacements. J Appl Biomater Biomech. 2003; 1: 19-32.
  • 19. Bultan Ö, Öngül D, Türkoğlu P. Zirkonyanın mikroyapılarına ve üretim şekillerine göre sınıflandırılması. J Istanb Univ Fac Dent. 2010; 44: 197-204.
  • 20. Ban S. Reliability and properties of core materials for all-ceramic dental restorations. Jpn Dent Sci Rev. 2008; 44: 3-21. [Crossref]
  • 21. Petrini M, Ferrante M, Su B. Fabrication and characterization of bio- mimetic ceramic/polymer composite materials for dental restorati- on. Dent Mater 2013; 29: 375-381. [Crossref]
  • 22. Pagniano Jr RP, Seghi RR, Rosenstiel SF, Wang R, Katsube N. The effe- ct of a layer of resin luting agent on the biaxial flexure strength of two all-ceramic systems. J Prosthet Dent. 2005; 93: 459-466. [Crossref]
  • 23. Höland W, Rheinberger V, Schweiger M. Control of nucleation in glass ceramics. Philos Trans A Math Phys Eng Sci. 2003; 36: 575- 589. [Crossref]
  • 24. Albakry M, Guazzato M, Swain MV. Biaxial flexural strength, elas- tic moduli, and x-ray diffraction characterization of three pres- sable all-ceramic materials. J Prosthet Dent. 2003; 89: 374-380. [Crossref]
  • 25. Sorensen JA. The IPS Empress 2 system: defining the possibilities. QDT (USA) 1999; 22: 153-163.
  • 26. Raigrodski AJ. Contemporary all-ceramic fixed partial dentures: a re- view Dent Clin North Am. 2004; 48: 531-544. [Crossref]
  • 27. Nakamura T, Ohyama T, Imanishi A, Nakamura T, Ishigaki S. Fracture resistance of pressable glass-ceramic fixed partial dentures. J Oral Rehabil. 2002; 29: 951-955. [Crossref]
  • 28. Schweiger M. IPS Empress 2: A new pressable high-strength glass-e- ramic for esthetic all-ceramic restorations. QDT (USA) 1999; 22: 143- 151.
  • 29. Martin JW. Stability of Microstructure in Metallic Systems. 2 ed. Cambridge University Press, Cambridge: 1997. p. 239-59. 30. Raptis NV, Michalakis KX, Hirayama H. Optical behavior of current ceramic systems. Int J Periodontics Restorative Dent. 2006; 26: 31- 41.
  • 31. IPS Empress and IPS Empress II Instructions for use, 1999.
  • 32. Ritter RG. Multifunctional Uses of a Novel Ceramic-Lithium Disilica- te. J Esthet Restor Dent. 2010; 22: 332-341. [Crossref]
  • 33. Ritter RG, Rego NA. Material considerations for using lithium disilica- te as a thin veneer option. J Cosmet Dent 2009; 25: 111-117.
  • 34. Ivoclar Vivadent, A. G. Scientific documentation IPS e. max® Press. Liechtenstein: Ivoclar Vivadent. 2005.
  • 35. Ivoclar Vivadent, A. G. The Compatible All-Ceramic System, Dental Technician and Instructor, Schaan, Liechtenstein. 2005.
  • 36. Stappert CF, Att W, Gerds T, Strub JR. Fracture resistance of different partial-coverage ceramic molar restorations: An in vitro investigati- on. J Am Dent Assoc. 2006; 137: 514-522. [Crossref]
  • 37. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent. 2002; 88: 4-9. [Crossref]
  • 38. Scientific Documentation: IPS Empress System. Researh and Deve- lopment Scientific Service; Ivoclar 2003.
  • 39. Fasbinder DJ, Dennison JB, Heys D, Neiva, G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns. J Am Dent Assoc. 2010; 141: 10S-4S. [Crossref]
  • 40. Giordano R. Materials for chairside CAD/CAM-produced restorations. J Am Den Assoc. 2006; 137: 14S-21S. [Crossref]
  • 41. Springall GA, Yin L. Response of pre-crystallized CAD/CAM zirconi- a-reinforced lithium silicate glass ceramic to cyclic nanoindentation. J Mech Behav Biomed Mater. 2019; 92: 58-70. [Crossref]
  • 42. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014; 93: 1235-1242. [Crossref]
  • 43. Springall GA, Yin L. Nano-scale mechanical behavior of pre-crystal- lized CAD/CAM zirconia-reinforced lithium silicate glass ceramic. J Mech Behav Biomed Mater. 2018; 82: 35-44. [Crossref]
  • 44. Nawafleh N, Hatamleh M, Elshiyab S, Mack F. Lithium disilicate resto- rations fatigue testing parameters: a systematic review. J Prostho- dont. 2016; 25: 116-126. [Crossref]
  • 45. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fractu- re Resistance of Lithium Disilicate--, Alumina-, and Zirconia-Based Three-Unit Fixed Partial Dentures: A Laboratory Study. Int J Prostho- dont. 2001; 14: 231-8.
  • 46. Johansson C, Kmet G, Rivera J, Larsson C, Vult von Steyern P. Frac- ture strength of monolithic all-ceramic crowns made of high trans- lucent yttrium oxide-stabilized zirconium dioxide compared to por- celain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014; 72: 145-153. [Crossref]
  • 47. Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disi- licate. J Prosthet Dent. 2018; 120: 132-137. [Crossref]
  • 48. de Kok P, Pereira GK, Fraga S, de Jager N, Venturini AB, Kleverlaan CJ. The effect of internal roughness and bonding on the fracture re- sistance and structural reliability of lithium disilicate ceramic. Dent Mater. 2017; 33: 1416-1425. [Crossref]
  • 49. Yoon HI, Sohn PJ, Jin S, Elani H, Lee, SJ. Fracture Resistance of CAD/ CAM-Fabricated Lithium Disilicate MOD Inlays and Onlays with Vari- ous Cavity Preparation Designs. J Prosthodont. 2019; 28: e524-e529. [Crossref]
  • 50. Rojpaibool T, Leevailoj C. Fracture resistance of lithium disilica- te ceramics bonded to enamel or dentin using different resin ce- ment types and film thicknesses. J Prosthodont. 2017; 26: 141-149. [Crossref]
  • 51. Nawafleh NA, Hatamleh MM, Öchsner A, Mack F. Fracture load and survival of anatomically representative monolithic lithium disilicate crowns with reduced tooth preparation and ceramic thickness. J Adv Prosthodont. 2017; 9: 416-422. [Crossref]
  • 52. Choi JW, Kim SY, Bae JH, Bae EB, Huh JB. In vitro study of the frac- ture resistance of monolithic lithium disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia for three-unit fixed dental prostheses. J Adv Prosthodont.2017; 9: 244-251. [Crossref] 53. Sagsoz O, Yildiz M, Ghahramanzadeh AH, Alsaran A. In vitro Frac- ture strength and hardness of different computer-aided design/ computer-aided manufacturing inlays. Niger J Clin Pract. 2018; 21: 380-387. 54. Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinfor- ced lithium silicate glass-ceramic. Dent Mater. 2016; 32: 908-914. [Crossref]
  • 55. Kim SY, Choi JW, Ju SW, Ahn JS, Yoon MJ, Huh, JB. Fracture Strength After Fatigue Loading of Lithium Disilicate Pressed Zirconia Crowns. Int J Prosthodont. 2016; 29: 369-371. [Crossref]
  • 56. Malkondu Ö, Tinastepe N, Akan, E, Kazazoğlu E. An overview of mo- nolithic zirconia in dentistry. Biotechnol Biotechnol Equip. 2016; 30: 644-652. [Crossref]
  • 57. Wolfart S, Eschbach S, Scherrer S, Kern, M. Clinical outcme of thre- e-unit lithium-disilicate glass-ceramic fixed dental prostheses: up to 8 years results. Dent Mater. 2009; 25: e63-e71. [Crossref]
  • 58. Reich S, Schierz, O. Chair-side generated posterior lithium disili- cate crowns after 4 years. Clinic Oral Investig. 2013; 17: 1765-1772. [Crossref]
  • 59. Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic re- view. J Prosthet Dent. 2014; 112: 22-30. [Crossref]
  • 60. Kern M, Sasse M, Wolfart S. Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc. 2012; 143: 234-240. [Crossref]
  • 61. Sulaiman TA, Delgado AJ, Donovan TE. Survival rate of lithium di- silicate restorations at 4 years: A retrospective study. J Prosthet Dent.2015; 114: 364-366. [Crossref]
  • 62. Edelhoff D, Güth JF, Erdelt K, Brix O, Liebermann A. Clinical perfor- mance of occlusal onlays made of lithium disilicate ceramic in pa- tients with severe tooth wear up to 11 years. Dent Mater. 2019; 35: 1319-1330. [Crossref]
  • 63. Aziz A, El-Mowafy O, Tenenbaum HC, Lawrence HP, Shokati, B. Clini- cal performance of chairside monolithic lithium disilicate glass-ce- ramic CAD-CAM crowns. J Esthet Restor Dent. 2019; 31: 613-619. [Crossref]
  • 64. Rauch A, Reich S, Schierz O. Chair-side generated posterior monolit- hic lithium disilicate crowns: clinical survival after 6 years. Clin Oral İnvestig. 2017; 21: 2083-2089. [Crossref]
  • 65. Abou-Steit S, ElGuindy J, Zaki A. Evaluation of patient satisfacti- on and shade matching of Vita Suprinity versus lithium disilicate (E-max) ceramic crowns in the esthetic zone: a randomized control- led clinical trial. F1000Research 2019; 8: 371. [Crossref]
  • 66. Malament KA, Margvelashvili-Malament M, Natto ZS, Thompson V, Rekow D, Att W. Comparison of 16.9-year survival of pressed acid et- ched e.max lithium disilicate glass ceramic complete and partial co- verage restorations in posterior teeth: Performance and outcomes as a function of tooth position, age, sex, and thickness of ceramic material. J Prosthet Dent. 2020. [Crossref]
  • 67. Scutella F, Weinstein T, Redaelli S, Cerutti A, Testori T, Özcan M. Relia- bility of Chair-side Monolithic CAD-CAM Generated Lithium Disilica- te Single Crowns with Knife- Edge Finish Line: Up to 5-Year Retros- pective Analysis of Clinical Performance. Eur J Prosthodont Restor Dent. 2020; 28: 94-97.
  • 68. Pecho OE, Ghinea R, Ionescu AM, de la Cruz Cardona J, Paravina RD, del Mar Pérez M. Color and translucency of zirconia ceramics, human dentine and bovine dentine. J Dent. [Crossref]
  • 69. Pires LA, Novais PM, Araújo VD, Pegoraro LF. Effects of the type and thickness of ceramic, substrate, and cement on the optical color of a lithium disilicate ceramic. J Prosthet Dent. 2017; 117 144-149. [Crossref]
  • 70. Chaiyabutr Y, Kois JC, LeBeau D, Nunokawa G. Effect of abutment to- oth color, cement color, and ceramic thickness on the resulting op- tical color of a CAD/CAM glass-ceramic lithium disilicate-reinforced crown. J Prosthet Dent. 2011; 105: 83-90. [Crossref]
  • 71. Niu E, Agustin M, Douglas RD. Color match of machinable lithium di- silicate ceramics: Effects of cement color and thickness. J Prosthet Dent 2014; 111: 42-50. [Crossref] 72. Czigola A, Abram E, Kovacs ZI, Marton K, Hermann P, Borbely J. Effe- cts of substrate, ceramic thickness, translucency, and cement shade on the color of CAD/CAM lithium-disilicate crowns. J Esthet Restor Dent. 2019; 31: 457-464. [Crossref]
  • 73. Habib DM. Effect of resin cement shades & thickness of zirconia rein- forced lithium disilicate ceramics (Vita Suprinity) on the optical pro- perties using dark background compared to lithium disilicate glass ceramics. CU Theses 2019.
  • 74. Mitov G, Heintze SD, Walz S, Woll K, Muecklich F, Pospiech P. Wear behavior of dental Y-TZP ceramic against natural enamel after diffe- rent finishing procedures. Dent Mater. 2012; 28: 909-918. [Crossref]
  • 75. Lawson NC, Janyavula S, Syklawer S, McLaren EA, Burgess JO. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. J Dent. 2014; 42: 1586-1591. [Crossref] 76. Kim MJ, Oh SH, Kim JH, Ju SW, Seo DG, Jun SH, Ryu JJ. Wear evalua- tion of the human enamel opposing different Y-TZP dental ceramics and other porcelains. J Dent. 2012; 40: 979-988. [Crossref]
  • 77. Preis V, Weiser F, Handel G, Rosentritt M. Wear performance of mo- nolithic dental ceramics with different surface treatments. Quintes- sence Int 2013; 44: 393-405.
  • 78. Tribst JPM, Alves LMM, Piva AMDOD, Melo RMD, Borges ALS, Pa- es-Junior TJA, Bottino MA. Reinforced Glass-ceramics: Parametric Inspection of Three-Dimensional Wear and Volumetric Loss after Chewing Simulation. Braz Dent J. 2019; 30: 505-510. [Crossref]
  • 79. Matzinger M, Hahnel S, Preis V, Rosentritt M. Polishing effects and wear performance of chairside CAD/CAM materials. Clin Oral İnves- tig. 2019; 23: 725-737. [Crossref]
There are 74 citations in total.

Details

Primary Language English
Subjects Prosthodontics
Journal Section Reviews
Authors

Abdullah Yiğit Yamalı This is me

Bilge Turhan Bal This is me

Publication Date July 14, 2023
Submission Date October 9, 2020
Published in Issue Year 2023 Volume: 33 Issue: 2 - 2023, 33:2

Cite

AMA Yamalı AY, Turhan Bal B. Lityum Disilikat Seramiklerin Özellikleri ve Klinik Uygulamaları. Curr Res Dent Sci. July 2023;33(2):122-130. doi:10.17567/ataunidfd.994747

Current Research in Dental Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

29936