Research Article
BibTex RIS Cite
Year 2025, Volume: 35 Issue: 1, 54 - 59, 20.01.2025
https://doi.org/10.17567/currresdentsci.1514578

Abstract

References

  • 1. Muller-Bolla M, Courson F, Smail-Faugeron V, Bernardin T and Lupi-Pégurier L. Dental erosion in French adolescents. BMC Oral Health. 2015; 15:147-158.
  • 2. Schlueter N, Luka B. Erosive tooth wear -a review on global prevalence and on its prevalence in risk groups. Br Dent J. 2018; 224(5): 364-370.
  • 3. Tulek A, Mulic A, Runningen M, Lillemo J, Utheim TP, Khan Q, et al. Genetic Aspects of Dental Erosive Wear and Dental Caries. Int J Dent. 2021:1-14.
  • 4. Johansson AK, Omar R, Carlsson GE. Dental erosion and its growing importance in clinical practice: from past to present. Int J Dent. 2012: 1-17.
  • 5. Wilder-Smith CL, Materna A, Martig L. Gastro-oesophageal reflux is common in oligosymptomatic patients with dental erosion: a pH-impedance and endoscopic study. Unit Eur Gastro J. 2015; 3: 174–181.
  • 6. Johansson AK, Norring C, Unell L. Eating disorders and oral health: a matched case-control study. Eur J Oral Sci. 2012; 120: 61–68.
  • 7. Chakraborty A, Anjankar AP. Association of gastroesophageal reflux disease with dental erosion. Cureus. 2022; 14(10): 1-5.
  • 8. Ariyanayagam Y. A dental hygienist’s and therapist’s guide to the management of tooth erosion. Prim Dent J. 2016; 5(3): 58-62.
  • 9. Szczesio-Wlodarczyk A, Sokolowski J, Kleczewska J, Bociong K. Ageing of dental composites based on methacrylate resins-A critical review of the causes and method of assessment. Polymers (Basel). 2020; 12: 1-18.
  • 10. Guler S, Unal M. The Evaluation of Color and Surface Roughness Changes in Resin based Restorative Materials with Different Contents After Waiting in Various Liquids: An SEM and AFM study. Microsc Res Tech. 2018; 81: 1422–1433.
  • 11. Meenakumari C, Manohar Bhat K, Bansal R, Singh N. Evaluation of Mechanical Properties of Newer Nanoposterior Restorative Resin Composites: An In vitro Study. Contemp Clin Dent. 2018; 9(1): 142-146.
  • 12. Bahari M, Savadi-Oskoee S, Kimyai S, Savadi-Oskoee A, Abbasi F. Effects of different etching strategies on the microtensile repair bond strength of beautifil II giomer material. J Clin Exp Dent. 2018; 10(8): 732-738.
  • 13. Mousavinasab SM, Meyers I. Fluoride release by glass ionomer cements, compomer and giomer. Dent Res J. 2009; 6: 75‑81.
  • 14. Unal M, Candan M, Ipek I, Kucukkoflaz M, Ozer A. Evaluation of the microhardness of different resin-based dental restorative materials treated with gastric acid: Scanning electron microscopy–energy dispersive X-ray spectroscopy analysis. Microsc Res Tech. 2021; 84: 2140–2148.
  • 15. Pace, F., et al. Systematic review: gastro‐oesophageal reflux disease and dental lesions. AP&T. 2008; 27(12): 1179-1186.
  • 16. Valena V, Young WG. Dental erosion patterns from intrinsic acid regurgitation and vomiting. Aust Dent J. 2002; 47(2): 106-115.
  • 17. Bayrak S, Ozalp N, Okte Z. Effects of drinks on solubility of different restorative materials. Mater Res Innov. 2011;15(2): 83–86.
  • 18. De Paula A, De Fúcio S, Alonso R, Ambrosano G, Puppin- Rontani R. Influence of chemical degradation on the surface properties of nano restorative materials. Oper Dent. 2014; 39(3): 109–117.
  • 19. Honorio H, Rios D, Francisconi L, Magalhaes A, Machado M, Buzalaf M. Effect of prolonged erosive pH cycling on different restorative materials. J Oral Rehabil. 2008; 35(12): 947–953.
  • 20. Aliping-McKenzie M, Linden R, Nicholson J. The effect of Coca-Cola and fruit juices on the surface hardness of glass–ionomers and ‘compomers’. J Oral Rehabil. 2004; 31(11): 1046–1052.
  • 21. Dos Santos PA, Garcia PPNS, De Oliveira ALBM, Chinelatti MA, Palma-Dibb RG. Chemical and morphological features of dental composite resin: Influence of light curing units and immersion media. Micr Res Tech. 2010; 73(3):176–181.
  • 22. von Fraunhofer JA, Rogers MM. Dissolution of dental enamel in soft drinks. General Dent. 2004; 52(4): 308–312.
  • 23. Wongkhantee S, Patanapiradej V, Maneenut C, Tantbirojn D. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J Dent. 2006; 34(3): 214–220.
  • 24. Dewald JP, Ferracane JL. A Comparison of four models of evaluation depth of cure of light-activated composites. J Dent Res. 1987; 66: 307—311.
  • 25. Von Beetzen M, Nicander I, Sundstro¨m F. Hardness and porosity of class II light-cured composite restorations cured with a transparent cone attached to the light-curing wand. Oper Dent. 1993; 18: 103—109.
  • 26. Khamverdi Z, Kasraie S, Rezaei-Soufi L, Jebeli S. Comparison of the effects of two whitening toothpastes on microhardness of the enamel and a microhybride composite resin: an in vitro study. J Dent Tehran Univ Med Sci. 2010; 7(3): 139- 145.
  • 27. Lin GSS, Ghani NRNA, Ismail NH, Singbal K, Noorani TY, Mamat N. New experimental zirconia‑reinforced rice husk nanohybrid composite and the outcome of its surface roughness and microhardness in comparison with commercialized nanofilled and microhybrid composite resins. Contemp Clin Dent. 2021; 12: 21-27.
  • 28. Sarac D, Sarac YS, Kulunk S, Ural C, Kulunk T. The effect of polishing techniques on the surface roughness and color change of composite resins. J Prosthet Dent. 2006; 96: 33‑40.
  • 29. Lee YK, El Zawahry M, Noaman KM, Powers JM. Effect of mouthwash and accelerated aging on the color stability of esthetic restorative materials. Am J Dent. 2000; 13: 159 161.
  • 30. Reis AF, Giannini M, Lovadino JR, dos Santos Dias CT. The effect of six polishing systems on the surface roughness of two packable resin based composites. Am J Dent. 2002; 15: 193 197.
  • 31. Alrahlah A, Al-Odayni AB, Al-Mutairi HF, Almousa BM. Alsubaie FS, Khan R, Saeed WS. A low-viscosity bis-GMA derivative for resin composites: synthesis, characterization, and evaluation of its rheological properties. Materials. 2021; 14: 338-353.
  • 32. Bueno LS, Silva RM, Magalhães APR, Navarro MFL, Pascotto RC, Buzalaf MAR, Nicholson JW, Sidhu SK, Borges AFS. Positive correlation between fluoride release and acid erosion of restorative glass-ionomer cements. Dent Mater. 2019; 35: 135–143.
  • 33. Soares LES, Melo TMTC, de Sá Brandim A, de Oliveira IR. Chemical and morphological evaluation of enamel and dentin near cavities restored with conventional and zirconia modified glass ionomer subjected to erosion-abrasion. Microsc Res Technol. 2019; 82: 1114–1126.
  • 34. Rusnac ME, Gasparik C, Irimie AI, Grecu AG, Mesaroş AS, Dudea D. Giomers in dentistry – at the boundary between dental composites and glass-ionomers. Med Pharm Reprts. 2019; 92(2): 123-128.
  • 35. Francisconi LF, Honorio HM, Rios D, Magalh AC, Machado MA, Buzalaf MAR. Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Oper Dent. 2008; 33(2): 203–208.

Effect of Gastric Acid on the Surface Properties of Different Composite Resin Restorative Materials: Scanning Electron Microscope (SEM) Evaluation

Year 2025, Volume: 35 Issue: 1, 54 - 59, 20.01.2025
https://doi.org/10.17567/currresdentsci.1514578

Abstract

Objective: The aim of this study was to evaluate the effect of gastric acid on different resin-based composites with surface microhardness, surface roughness and scanning electron microscopy (SEM).
Methods: Three different composite resin restorative materials (Clearfil Majesty ES-2{Kuraray, Tokyo, Japan}, Beautifil II {Shofu, Ratingen, Germany}, Group Beautifil II LS {Shofu, Ratingen, Germany}) were used. Vickers microhardness and surface roughness measurements were evaluated at baseline, after 7 and 14 days of soaking in gastric acid. SEM images were obtained to examine the effects of gastric acid on the surface properties of the composites.
Results: When the difference in the microhardness values of the composite resins was compared, the time-dependent change in all composites was found to be statistically significant. The most surface roughness and hardness changes occurred in Beautifil II group (P:0.000; P<.05). According to SEM images, Beautifil II group was most affected by gastric acid, while Clearfil Majesty group was least affected.
Conclusion: In vitro conditions gastric acid increased the surface roughness of different composites while decreasing their microhardness. As a result, if these restorative materials are to be preferred in patients with reflux, they should be checked frequently. In the presence of an uncontrollable situation, the use of these restorative materials can be limited.
Keywords: Gastric acid, microhardness, surface roughness, SEM

References

  • 1. Muller-Bolla M, Courson F, Smail-Faugeron V, Bernardin T and Lupi-Pégurier L. Dental erosion in French adolescents. BMC Oral Health. 2015; 15:147-158.
  • 2. Schlueter N, Luka B. Erosive tooth wear -a review on global prevalence and on its prevalence in risk groups. Br Dent J. 2018; 224(5): 364-370.
  • 3. Tulek A, Mulic A, Runningen M, Lillemo J, Utheim TP, Khan Q, et al. Genetic Aspects of Dental Erosive Wear and Dental Caries. Int J Dent. 2021:1-14.
  • 4. Johansson AK, Omar R, Carlsson GE. Dental erosion and its growing importance in clinical practice: from past to present. Int J Dent. 2012: 1-17.
  • 5. Wilder-Smith CL, Materna A, Martig L. Gastro-oesophageal reflux is common in oligosymptomatic patients with dental erosion: a pH-impedance and endoscopic study. Unit Eur Gastro J. 2015; 3: 174–181.
  • 6. Johansson AK, Norring C, Unell L. Eating disorders and oral health: a matched case-control study. Eur J Oral Sci. 2012; 120: 61–68.
  • 7. Chakraborty A, Anjankar AP. Association of gastroesophageal reflux disease with dental erosion. Cureus. 2022; 14(10): 1-5.
  • 8. Ariyanayagam Y. A dental hygienist’s and therapist’s guide to the management of tooth erosion. Prim Dent J. 2016; 5(3): 58-62.
  • 9. Szczesio-Wlodarczyk A, Sokolowski J, Kleczewska J, Bociong K. Ageing of dental composites based on methacrylate resins-A critical review of the causes and method of assessment. Polymers (Basel). 2020; 12: 1-18.
  • 10. Guler S, Unal M. The Evaluation of Color and Surface Roughness Changes in Resin based Restorative Materials with Different Contents After Waiting in Various Liquids: An SEM and AFM study. Microsc Res Tech. 2018; 81: 1422–1433.
  • 11. Meenakumari C, Manohar Bhat K, Bansal R, Singh N. Evaluation of Mechanical Properties of Newer Nanoposterior Restorative Resin Composites: An In vitro Study. Contemp Clin Dent. 2018; 9(1): 142-146.
  • 12. Bahari M, Savadi-Oskoee S, Kimyai S, Savadi-Oskoee A, Abbasi F. Effects of different etching strategies on the microtensile repair bond strength of beautifil II giomer material. J Clin Exp Dent. 2018; 10(8): 732-738.
  • 13. Mousavinasab SM, Meyers I. Fluoride release by glass ionomer cements, compomer and giomer. Dent Res J. 2009; 6: 75‑81.
  • 14. Unal M, Candan M, Ipek I, Kucukkoflaz M, Ozer A. Evaluation of the microhardness of different resin-based dental restorative materials treated with gastric acid: Scanning electron microscopy–energy dispersive X-ray spectroscopy analysis. Microsc Res Tech. 2021; 84: 2140–2148.
  • 15. Pace, F., et al. Systematic review: gastro‐oesophageal reflux disease and dental lesions. AP&T. 2008; 27(12): 1179-1186.
  • 16. Valena V, Young WG. Dental erosion patterns from intrinsic acid regurgitation and vomiting. Aust Dent J. 2002; 47(2): 106-115.
  • 17. Bayrak S, Ozalp N, Okte Z. Effects of drinks on solubility of different restorative materials. Mater Res Innov. 2011;15(2): 83–86.
  • 18. De Paula A, De Fúcio S, Alonso R, Ambrosano G, Puppin- Rontani R. Influence of chemical degradation on the surface properties of nano restorative materials. Oper Dent. 2014; 39(3): 109–117.
  • 19. Honorio H, Rios D, Francisconi L, Magalhaes A, Machado M, Buzalaf M. Effect of prolonged erosive pH cycling on different restorative materials. J Oral Rehabil. 2008; 35(12): 947–953.
  • 20. Aliping-McKenzie M, Linden R, Nicholson J. The effect of Coca-Cola and fruit juices on the surface hardness of glass–ionomers and ‘compomers’. J Oral Rehabil. 2004; 31(11): 1046–1052.
  • 21. Dos Santos PA, Garcia PPNS, De Oliveira ALBM, Chinelatti MA, Palma-Dibb RG. Chemical and morphological features of dental composite resin: Influence of light curing units and immersion media. Micr Res Tech. 2010; 73(3):176–181.
  • 22. von Fraunhofer JA, Rogers MM. Dissolution of dental enamel in soft drinks. General Dent. 2004; 52(4): 308–312.
  • 23. Wongkhantee S, Patanapiradej V, Maneenut C, Tantbirojn D. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J Dent. 2006; 34(3): 214–220.
  • 24. Dewald JP, Ferracane JL. A Comparison of four models of evaluation depth of cure of light-activated composites. J Dent Res. 1987; 66: 307—311.
  • 25. Von Beetzen M, Nicander I, Sundstro¨m F. Hardness and porosity of class II light-cured composite restorations cured with a transparent cone attached to the light-curing wand. Oper Dent. 1993; 18: 103—109.
  • 26. Khamverdi Z, Kasraie S, Rezaei-Soufi L, Jebeli S. Comparison of the effects of two whitening toothpastes on microhardness of the enamel and a microhybride composite resin: an in vitro study. J Dent Tehran Univ Med Sci. 2010; 7(3): 139- 145.
  • 27. Lin GSS, Ghani NRNA, Ismail NH, Singbal K, Noorani TY, Mamat N. New experimental zirconia‑reinforced rice husk nanohybrid composite and the outcome of its surface roughness and microhardness in comparison with commercialized nanofilled and microhybrid composite resins. Contemp Clin Dent. 2021; 12: 21-27.
  • 28. Sarac D, Sarac YS, Kulunk S, Ural C, Kulunk T. The effect of polishing techniques on the surface roughness and color change of composite resins. J Prosthet Dent. 2006; 96: 33‑40.
  • 29. Lee YK, El Zawahry M, Noaman KM, Powers JM. Effect of mouthwash and accelerated aging on the color stability of esthetic restorative materials. Am J Dent. 2000; 13: 159 161.
  • 30. Reis AF, Giannini M, Lovadino JR, dos Santos Dias CT. The effect of six polishing systems on the surface roughness of two packable resin based composites. Am J Dent. 2002; 15: 193 197.
  • 31. Alrahlah A, Al-Odayni AB, Al-Mutairi HF, Almousa BM. Alsubaie FS, Khan R, Saeed WS. A low-viscosity bis-GMA derivative for resin composites: synthesis, characterization, and evaluation of its rheological properties. Materials. 2021; 14: 338-353.
  • 32. Bueno LS, Silva RM, Magalhães APR, Navarro MFL, Pascotto RC, Buzalaf MAR, Nicholson JW, Sidhu SK, Borges AFS. Positive correlation between fluoride release and acid erosion of restorative glass-ionomer cements. Dent Mater. 2019; 35: 135–143.
  • 33. Soares LES, Melo TMTC, de Sá Brandim A, de Oliveira IR. Chemical and morphological evaluation of enamel and dentin near cavities restored with conventional and zirconia modified glass ionomer subjected to erosion-abrasion. Microsc Res Technol. 2019; 82: 1114–1126.
  • 34. Rusnac ME, Gasparik C, Irimie AI, Grecu AG, Mesaroş AS, Dudea D. Giomers in dentistry – at the boundary between dental composites and glass-ionomers. Med Pharm Reprts. 2019; 92(2): 123-128.
  • 35. Francisconi LF, Honorio HM, Rios D, Magalh AC, Machado MA, Buzalaf MAR. Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Oper Dent. 2008; 33(2): 203–208.
There are 35 citations in total.

Details

Primary Language English
Subjects Restorative Dentistry
Journal Section Research Articles
Authors

Cansu Dağdelen Ahısha This is me

Cemile Kedici Alp This is me

Publication Date January 20, 2025
Submission Date April 8, 2023
Published in Issue Year 2025 Volume: 35 Issue: 1

Cite

AMA Dağdelen Ahısha C, Kedici Alp C. Effect of Gastric Acid on the Surface Properties of Different Composite Resin Restorative Materials: Scanning Electron Microscope (SEM) Evaluation. Curr Res Dent Sci. January 2025;35(1):54-59. doi:10.17567/currresdentsci.1514578

Current Research in Dental Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

29936