Research Article
BibTex RIS Cite

KUADRATİK ATAMA PROBLEMİNE YENİ BİR MELEZ KARINCA KOLONİSİ OPTİMİZASYON ALGORİTMASI ÖNERİSİ

Year 2020, Volume: 29 Issue: 4, 21 - 32, 30.12.2020
https://doi.org/10.35379/cusosbil.658693

Abstract

Günümüzde işletmeler çok farklı tiplerde karar problemleri ile uğraşmak durumundadırlar. Kuadratik atama problemi ise işletmelerin karşılaştıkları bu tip problemlerin birçoğu için model olarak kullanılabilmektedir. Problem, aralarında iş akışı bulunan aktivite merkezlerinin lokasyonlara yerleştirilmesi olarak ifade edilebilmektedir. Problemin modelinde doğrusal olmayan fonksiyonlar ve tam sayılı değişkenler bulunması sebebiyle çözümünde yaklaşık iyi çözümler üreten sezgisel yaklaşımlar çoğunlukla tercih edilmektedir. Çalışma kapsamında, yeni bir komşuluk fonksiyonu yaklaşımı ile oluşturulan yerel arama algoritması önerilmiş ve bu önerinin Karınca Kolonisi Optimizasyon Algoritması ile birleşiminden yeni bir melez sezgisel algoritma geliştirilmiştir. Önerilen yaklaşım bilinen komşuluk fonksiyonlarına dayalı yaklaşımlar ve klasik yaklaşımla kuadratik atama probleminin çözümünde örnek problemler üzerinden kıyaslanmıştır. Yöntemlerden elde edilen çözüm değerlerine göre önerilen yaklaşımın çözüm performansının etkili olduğu görülmektedir.

References

  • Abdel-Basset, M., Manogaran, G., Rashad, H., & Zaied, A. N. H. (2018). A comprehensive review of quadratic assignment problem: variants, hybrids and applications. Journal of Ambient Intelligence and Humanized Computing, 1-24.
  • Ahuja, R. K., Orlin, J. B., & Tiwari, A. (2000). A greedy genetic algorithm for the quadratic assignment problem. Computers & Operations Research, 27(10), 917-934.
  • Burkard, R. E., Karisch, S. E., & Rendl, F. (1997). QAPLIB–a quadratic assignment problem library. Journal of Global optimization, 10(4), 391-403.
  • Demirel, N. Ç., & Toksarı, M. D. (2006). Optimization of the quadratic assignment problem using an ant colony algorithm. Applied Mathematics and Computation, 183(1), 427-435.
  • Dokeroglu, T. (2015). Hybrid teaching–learning-based optimization algorithms for the Quadratic Assignment Problem. Computers & Industrial Engineering, 85, 86-101.
  • Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di Milano, Italy.
  • Dorigo, M., & Stützle, T. (2019). Ant colony optimization: overview and recent advances. In Handbook of metaheuristics (pp. 311-351). Springer, Cham.
  • Duman, E., Uysal, M., & Alkaya, A. F. (2012). Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Information Sciences, 217, 65-77.
  • Gambardella, L. M., Taillard, É. D., & Dorigo, M. (1999). Ant colonies for the quadratic assignment problem. Journal of the operational research society, 50(2), 167-176.
  • Jahed, A. & Rahbari, M. (2017). Comparison of Three Neighbor Generation Structures by Simulated Annealing Method to Solve Quadratic Assignment Problem. 10th International Conference of Iranian Operations Research Society (ICIORS 2017), University of Mazandaran, May 2017, Babolsar, Iran.
  • Koopmans, T. C., & Beckmann, M. (1957). Assignment problems and the location of economic activities. Econometrica: journal of the Econometric Society, 53-76.
  • Liu, H., Abraham, A., & Zhang, J. (2007). A particle swarm approach to quadratic assignment problems. In Soft computing in industrial applications (pp. 213-222). Springer, Berlin, Heidelberg.
  • Maniezzo, V., & Colorni, A. (1999). The ant system applied to the quadratic assignment problem. IEEE Transactions on knowledge and data engineering, 11(5), 769-778.
  • Peng, T., Huanchen, W., & Dongme, Z. (1996). Simulated annealing for the quadratic assignment problem: A further study. Computers & industrial engineering, 31(3-4), 925-928.
  • Pradeepmon, T., Sridharan, R., & Panicker, V. (2018). Development of modified discrete particle swarm optimization algorithm for quadratic assignment problems. International Journal of Industrial Engineering Computations, 9(4), 491-508.
  • Samanta, S., Philip, D., & Chakraborty, S. (2018). Bi-objective dependent location quadratic assignment problem: Formulation and solution using a modified artificial bee colony algorithm. Computers & Industrial Engineering, 121, 8-26.
  • Stützle, T., & Hoos, H. H. (2000). MAX–MIN ant system. Future generation computer systems, 16(8), 889-914.
  • Taillard, É. (1991). Robust taboo search for the quadratic assignment problem. Parallel computing, 17(4-5), 443-455.
  • Talbi, E. G., Roux, O., Fonlupt, C., & Robillard, D. (2001). Parallel ant colonies for the quadratic assignment problem. Future Generation Computer Systems, 17(4), 441-449.
  • Tate, D. M., & Smith, A. E. (1995). A genetic approach to the quadratic assignment problem. Computers & Operations Research, 22(1), 73-83.
  • Tseng, L. Y., & Liang, S. C. (2006). A hybrid metaheuristic for the quadratic assignment problem. Computational Optimization and Applications, 34(1), 85-113.
Year 2020, Volume: 29 Issue: 4, 21 - 32, 30.12.2020
https://doi.org/10.35379/cusosbil.658693

Abstract

References

  • Abdel-Basset, M., Manogaran, G., Rashad, H., & Zaied, A. N. H. (2018). A comprehensive review of quadratic assignment problem: variants, hybrids and applications. Journal of Ambient Intelligence and Humanized Computing, 1-24.
  • Ahuja, R. K., Orlin, J. B., & Tiwari, A. (2000). A greedy genetic algorithm for the quadratic assignment problem. Computers & Operations Research, 27(10), 917-934.
  • Burkard, R. E., Karisch, S. E., & Rendl, F. (1997). QAPLIB–a quadratic assignment problem library. Journal of Global optimization, 10(4), 391-403.
  • Demirel, N. Ç., & Toksarı, M. D. (2006). Optimization of the quadratic assignment problem using an ant colony algorithm. Applied Mathematics and Computation, 183(1), 427-435.
  • Dokeroglu, T. (2015). Hybrid teaching–learning-based optimization algorithms for the Quadratic Assignment Problem. Computers & Industrial Engineering, 85, 86-101.
  • Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di Milano, Italy.
  • Dorigo, M., & Stützle, T. (2019). Ant colony optimization: overview and recent advances. In Handbook of metaheuristics (pp. 311-351). Springer, Cham.
  • Duman, E., Uysal, M., & Alkaya, A. F. (2012). Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Information Sciences, 217, 65-77.
  • Gambardella, L. M., Taillard, É. D., & Dorigo, M. (1999). Ant colonies for the quadratic assignment problem. Journal of the operational research society, 50(2), 167-176.
  • Jahed, A. & Rahbari, M. (2017). Comparison of Three Neighbor Generation Structures by Simulated Annealing Method to Solve Quadratic Assignment Problem. 10th International Conference of Iranian Operations Research Society (ICIORS 2017), University of Mazandaran, May 2017, Babolsar, Iran.
  • Koopmans, T. C., & Beckmann, M. (1957). Assignment problems and the location of economic activities. Econometrica: journal of the Econometric Society, 53-76.
  • Liu, H., Abraham, A., & Zhang, J. (2007). A particle swarm approach to quadratic assignment problems. In Soft computing in industrial applications (pp. 213-222). Springer, Berlin, Heidelberg.
  • Maniezzo, V., & Colorni, A. (1999). The ant system applied to the quadratic assignment problem. IEEE Transactions on knowledge and data engineering, 11(5), 769-778.
  • Peng, T., Huanchen, W., & Dongme, Z. (1996). Simulated annealing for the quadratic assignment problem: A further study. Computers & industrial engineering, 31(3-4), 925-928.
  • Pradeepmon, T., Sridharan, R., & Panicker, V. (2018). Development of modified discrete particle swarm optimization algorithm for quadratic assignment problems. International Journal of Industrial Engineering Computations, 9(4), 491-508.
  • Samanta, S., Philip, D., & Chakraborty, S. (2018). Bi-objective dependent location quadratic assignment problem: Formulation and solution using a modified artificial bee colony algorithm. Computers & Industrial Engineering, 121, 8-26.
  • Stützle, T., & Hoos, H. H. (2000). MAX–MIN ant system. Future generation computer systems, 16(8), 889-914.
  • Taillard, É. (1991). Robust taboo search for the quadratic assignment problem. Parallel computing, 17(4-5), 443-455.
  • Talbi, E. G., Roux, O., Fonlupt, C., & Robillard, D. (2001). Parallel ant colonies for the quadratic assignment problem. Future Generation Computer Systems, 17(4), 441-449.
  • Tate, D. M., & Smith, A. E. (1995). A genetic approach to the quadratic assignment problem. Computers & Operations Research, 22(1), 73-83.
  • Tseng, L. Y., & Liang, S. C. (2006). A hybrid metaheuristic for the quadratic assignment problem. Computational Optimization and Applications, 34(1), 85-113.
There are 21 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Osman Pala 0000-0002-2634-2653

Publication Date December 30, 2020
Submission Date December 12, 2019
Published in Issue Year 2020 Volume: 29 Issue: 4

Cite

APA Pala, O. (2020). KUADRATİK ATAMA PROBLEMİNE YENİ BİR MELEZ KARINCA KOLONİSİ OPTİMİZASYON ALGORİTMASI ÖNERİSİ. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 29(4), 21-32. https://doi.org/10.35379/cusosbil.658693

Cited By