Research Article
BibTex RIS Cite

Spatial-Temporal Analysis of Particulate Matter (PM10) and Sulphur Dioxide (SO2) Concentrations in Ankara Using Climate Parameters

Year 2025, Volume: 11 Issue: 1, 249 - 267, 27.01.2025
https://doi.org/10.21324/dacd.1533641

Abstract

Air pollution in Turkey has become a significant issue, particularly in large cities, due to population growth, unplanned urbanization, and increases in industrial and energy facilities. Particulate Matter (PM10) and Sulphur Dioxide (SO2) concentrations significantly deteriorate air quality due to high emissions from industrial and energy production. Ankara, one of the major cities facing air pollution problems, is noted as having air pollution among the top issues in the 2022 Turkey Environmental Issues and Priorities Assessment Report. This study aims to investigate the spatial-temporal changes in PM10 and SO2 concentrations in Ankara from 2011 to 2014 under the influence of meteorological factors using the Kriging with External Drift (KED) method. In 2011, PM10 and SO2 concentration levels were lower compared to other years but remained above the annual concentration limits set by the World Health Organization (WHO). In 2012 and 2013, increases in PM10 and SO2 concentrations were observed, showing variability across different regions of the city. In 2014, a notable decrease in PM10 and SO2 concentrations was observed, coinciding with increased rainfall and temperature values. When evaluating the performance of the prediction models for PM10 and SO2 concentrations, it is found that the PM10 model explains 66% and the SO2 model explains 78% of the variance. The spatial-temporal KED analysis of PM10 and SO2 concentrations using meteorological factors is crucial for understanding the changes in air pollution and comprehending the relationships between spatial variables and their interactions over time.

Project Number

Yok

References

  • Adhikary, S. K., Muttil, N., & Yilmaz, A. G. (2017). Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrological Process, 31(12), 2129–2315. https://doi.org/10.1002/hyp.11163
  • Akbal, Y., & Ünlü, K. D. (2022). A deep learning approach to model daily particular matter of Ankara: key features and forecasting. International Journal of Environmental Science and Technology, 19, 5911–5927. https://doi.org/10.1007/s13762-021-03730-3
  • Alahmad, B., Khraishah, H., Althalji, K., MPhil, W. B., Al-Mulla, F., & Koutrakis, P. (2023). Connections between air pollution, climate change, and cardiovascular health. Canadian Journal of Cardiology, 39(9), 1182–1190. https://doi.org/10.1016/j.cjca.2023.03.025
  • Arslan, H., Ağır, A., & Demir, G. (2024). Impacts of PM10 exposure on hospitalization for acute bronchitis in Ankara, Türkiye. Frontiers in Life Sciences and Related Technologies, 5(1), 1–5. https://doi.org/10.51753/flsrt.1322260
  • Arslan, M., & Dursun, D. (2024). Planlı gelişme alanlarının hava kirliliğine olası etkilerinin değerlendirilmesi. Doğal Afetler ve Çevre Dergisi, 10(1), 125–139. http://doi.org/10.21324/dacd.1360742
  • Aydın, O., & Özgür, E. M. (2009). Ankara’nın kentsel gelişiminin uzaktan algılama ve coğrafi bilgi sistemleriyle ölçülmesi. e-Journal of New World Sciences Academy Nature Sciences, 4(4), 215–242.
  • Aydin, O., & Çiçek, I. (2015). Geostatistical interpolation of precipitation in Turkey. Lambert Academic Publishing.
  • Aydın, N. (2023). Investigating the Relationship between urban environment, air quality and childhood asthma: the case of Ankara. [Doctoral dissertation, Middle East Technical University]. OpenMETU. https://open.metu.edu.tr/handle/11511/102564
  • Beauchamp, M., & Bessagnet, B. (2023). An iterative optimization scheme to accommodate inequality constraints in air quality geostatistical estimation of multivariate PM. Heliyon, 9, Article e17413. https://doi.org/10.1016/j.heliyon.2023.e17413
  • Bozdağ, A., Dokuz, Y., & Gökçek, Ö. B. (2020). Spatial prediction of PM10 concentration using machine learning algorithms in Ankara, Turkey. Environmental Pollution, 263, Article 114635. https://doi.org/10.1016/j.envpol.2020.114635
  • Butenko, O., & Topchıy, A. (2023). Analysis of pollutants in air within the territory of Ukraine using geostatistical methods. Radioelectronic and Computer Systems, 3(107), 226–237. http://doi.org/0.32620/reks.2023.3.18 Breeze Technologies. (2021). The new 2021 WHO air quality guideline limits. Breeze Tech. https://www.breeze-technologies.de/blog/new-2021-who-air-quality-guideline-limits/
  • Cenlin, H., Rajesh, K., Wenfu, T., Gabriele, P., Yangyang, X., Yun, Q., & Guy, B. (2024). Air pollution interactions with weather and climate extremes: current knowledge, gaps, and future directions. Current Pollution Reports, 10(3), 430–442. http://doi.org/10.1007/s40726-024-00296-9
  • Çevre ve Şehircilik Bakanlığı. (2013). Kentlerde hava kalitesi değerlendirme sisteminin geliştirilmesi projesi (KENTAIR), Ankara hava kalitesi değerlendirme raporu. https://webdosya.csb.gov.tr/db/cygm/editordosya/Ankara%20Kentair%20Raporu.pdf
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (2022). Türkiye çevre sorunları ve öncelikleri değerlendirme raporu. https://webdosya.csb.gov.tr/db/ced/icerikler/turk-ye-cevre-sorunlari-ve-oncel-kler-_2022_3_ver3.logoduzenlendi 20230901135641.pdf
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (t.y.). Ulusal hava kalite izleme ağı. https://sim.csb.gov.tr/Services/AirQuality
  • Delbari, M., Afrasiab, P., & Jahani, S. (2013). Spatial interpolation of monthly and annual rainfall in northeast of Iran. Meteorology and Atmospheric Physics, 122(1), 103–113. https://doi.org/10.1007/s00703‐013‐0273‐5 Demuzere, M., Trigo, R. M., Vila-Guerau de Arellano, J., & van Lipzig, N. P. M. (2009). The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site. Atmospheric Chemistry and Physics, 9, 2695–2714.
  • Erol, O., (1968). The growth of Ankara city and the geomorphology of its site. Colloque İnternational de Gèographie Appliquèe, 48, 231–245.
  • Eshraghi, M. (2023). Automatic modelling and mapping of Paticular Matter (PM10) [Master dissertation, University of Twente]. Essay.utwente.n. https://purl.utwente.nl/essays/93966
  • Fan, H., Zhao, C., & Yang, Y. (2020). A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmospheric Environment, 220, Article 117066. https://doi.org/10.1016/j.atmosenv.2019.117066
  • Feng, T., Sun, Y., Shi, Y., Ma, J., Feng, C., & Chen, Z. (2024). Air pollution control policies and impacts: A review. Renewable and Sustainable Energy Reviews, 191, Article 11407. https://doi.org/10.1016/j.rser.2023.114071
  • Genc, D. D., Yesilyurt, C., & Tuncel, G. (2010). Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere. Environmental Monitoring and Assessment, 166, 11–27. http://doi.org/0.1007/s10661-009-0981-y
  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press.
  • Greenpeace. (2022, Ekim 13). Türkiye’de Hava Kirliliği Yükü–2021 Raporu. https://www.greenpeace.org/turkey/raporlar/turkiyede-hava-kirliligi-yuku-2021/
  • Hengl, T., Heuvelink, G., & Rossiter, D. G. (2007). About regression-kriging: From equations to case studies. Computers & Geosciences, 33(10), 1301–1315. http://doi.org/10.1016/j.cageo.2007.05.001
  • Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., & Brasseur, O. (2005). A neural network forecast for Daily average PM10 concentrations in Belgium. Atmospheric Environment, 39, 3279–3289. http://doi/10.1016/j.atmosenv.2005.01.050
  • Idir, Y. M., Olivier, O., Judalet, V., Sagot, B., & Chatellier, P. (2021). Mapping urban air quality from mobile sensors using spatio-temporal geostatistics. Sensors, 21, Article 4717. http://doi.org/10.3390/s21144717
  • Ignaccolo, R., Mateu, J., & Giraldo, R. (2014). Kriging with external drift for functional data for air quality monitoring. Stochastic Environmental Research and Risk Assessment, 28, 1171–1186. http://doi.org/10.1007/s00477-013-0806-y
  • Isaaks, E., & Srivastava, R. (1989). An introduction to applied geostatistics. Oxford University Press.
  • İpek, Z., & Uyanık, İ. (2022). Sanayi kaynaklı noktasal emisyonların hava kalitesine katkısı: Kayseri İli örneği. Doğal Afetler ve Çevre Dergisi, 8(2), 341–350. http://doi.org/10.21324/dacd.1056806
  • Koçak, E., & Balcılar, İ. (2024). Spatio-temporal variation of particulate matter with health impact assessment and long-range transport case study: Ankara, Türkiye. Science of the Total Environment, 938, Article 173650. https://doi.org/10.1016/j.scitotenv.2024.173650
  • Kongsanun, C., Chutsagulprom, N., & Moonchai, S. (2024). Spatio-temporal dual kriging with adaptive coefficient drift function. Mathematics, 12, 400, 1–21. http://doi.org/10.3390/math12030400
  • Köse, Y., Şahin, Ş., & Müftüoğlu, V. (2024). Ankara Çayı Havzası’nın kentsel planlama kapsamında taşkın duyarlılığı açısından değerlendirilmesi. İdealkent, 43(16), 512–543. http://doi.org/10.31198/idealkent.1360600
  • Liang, F., Gao, M., Xiao, Q., Carmichael, G. R., Pan, X., & Liu, Y. (2017). Evaluation of a data fusion approach to estimate daily PM2.5 levels in North China. Environmental Research, 158, 54–60. https://doi.org/10.1016/j.envres.2017.06.001
  • Lichtenstern, A. (2013). Kriging methods in spatial statistics [Bachelor’s dissertation, Technische Universität München]. mediatum.ub.tum.de. https://www.semanticscholar.org/paper/Kriging-methods-in-spatial-statistics-Lichtenstern/129ba812abb cb734a973e51f102d60227d5e6f6e
  • Meteoroloji Genel Müdürlüğü. (t.y.). İllere ait mevsim normalleri (1991–2020). https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=ANKARA
  • Oral, H. V., Ulusoy, İ., Özelkan, E., & Toros, H. (2015, April 28–30). Ankara ve çevre illerde hava kirliliği dağılımı ve emisyon envanterinin belirlenmesi [Conference presentation]. VII. Atmospheric Science Symposium, İstanbul, Türkiye.
  • Otto, P., Moro, A. F., Rodeschini, J., Shaboviq, Q., Ignaccolo, R., Golini, N., Cameletti, M., Maranzano, P., Finazzi, F., & Fassò, A. (2024). Spatiotemporal modelling of PM2.5 concentrations in Lombardy (Italy): a comparative study. Environmental and Ecological Statistics, 31, 245–272. https://doi.org/10.1007/s10651-023-00589-0
  • Özgür, E.M. (1995). Türkiye’deki iç göçlerde Ankara İli’nin yeri. Ankara Üniversitesi Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 4, 63–76.
  • Pearce, J. L., Rathbun, S. L., Aguilar-Villalobos, M., & Naeher, L. P. (2009). Characterizing the spatiotemporal variability of PM2.5 in Cusco, Peru using kriging with external drift. Atmospheric Environment, 43, 2060–2069. http://doi.org/10.1016/j.atmosenv.2008.10.060
  • Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computer Geoscience, 30(7), 683–691.
  • Pebesma, E. (2012). Spacetime: spatio-temporal data in R. Journal of Statistical Software, 51(7), 1–30
  • Pei, H., & Shiliang, W. (2016). Long-term changes in extreme air pollution meteorology and the implications for air quality. Scientific Reports, 6, Article 23792. http://doi.org/10.1038/srep23792
  • Pinho-Gomes, A.-C., Roaf, E., Fuller, G., Fowler, D., Lewis, A., ApSimon, H., Noakes, C., Johnstone, P., & Holgate, S. (2023). Air pollution and climate change. The LANCET Planetary Health, 7(9), 7–8. https://doi.org/10.1016/S2542-5196(23)00189-4
  • R Development Core Team. (2016). The R project for statistical computing. https://www.r-project.org/
  • Raja, N. B, & Aydin, O. (2017). New approaches to flash flood forecasting in the Mediterranean Region. Lambert Academic Publishing.
  • Raja, N. B., Aydin, O., Türkoğlu, N., & Çiçek, İ. (2018). Characterising the seasonal variations and spatial distribution of ambient PM10 in urban Ankara, Turkey. Environmental Processes, 5(1), 349–362. http://doi.org/10.1007/s40710-018-0305-8
  • Rahaman, S.N., Nelson, J., Ali, A.A.B., Shermin, N., Pricope, N. G., Kafy, A. A., Sabuj, M. S., & Toa, S. S. (in press). A multivariate geostatistical framework to assess the spatio-temporal dynamics of air pollution and land surface temperature in Bangladesh. Earth Systems Environment. https://doi.org/10.1007/s41748-024-00418-9
  • Rahim, U. A., & Masseran, N. (2023). State-space time series analysis on air pollution data. Environment and Ecology Research, 11(1), 155–164. http://doi.org/10.13189/eer.2023.110111
  • Ramos, Y., St-Onge, B., Blanchet, J-P., & Smargiassi, A. (2016). Spatio-temporal models to estimate daily concentrations of fine particulate matter in Montreal: Kriging with external drift and inverse distance-weighted approaches. Journal of Exposure Science and Environmental Epidemiology, 26, 405–414. https://doi.org/10.1038/jes.2015.79
  • Rusmilli, S. H. A., Hamzah, F. M., Choy, L. K., Azizah, R., Sulistyorini, L., Yudhastuti, R., Diyanah, K. C., Adriyani, R., & Latif, M. T. (2023). Ground-level particulate matter (PM2.5) concentration mapping in the central and south zones of Peninsular Malaysia using a geostatistical approach. Sustainability, 15(23), Article 1616. https://doi.org/10.3390/su152316169
  • Ulutas, K., Abujayyab, S. K. M., & Abu Amr, S. (2021). Evaluation of the major air pollutants levels and its interactions with meteorological parameters in Ankara. Mühendislik Bilimleri ve Tasarım Dergisi, 9(4), 1284–1295. http://doi.org/10.21923/jesd.939724
  • Sahin, M., Incecik, S., Topcu, S., & Yildirim, A. (2001). Analysis of atmospheric conditions during air pollution episodes in Ankara, Turkey. Journal of the Air & Waste Management Association, 51(7), 972–982. https://doi.org/10.1080/10473289.2001.10464334
  • Shaman, J., & Kohn, M., (2009). Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences, 106(9), 3243–3248. https://doi.org/10.1073/pnas.0806852106
  • Temiz Hava Hakkı Platformu. (2023, Mart). Kara rapor 2022: hava kirliliği ve sağlık etkileri. https://www.temizhavahakki.org/wp-content/uploads/2023/03/KaraRapor_v6.pdf
  • Toros, H., Bağış, S., & Gemici, Z. (2018). Ankara’da hava kirliliği mekânsal dağılımının modellenmesi. Ulusal Çevre Bilimleri Araştırma Dergisi, 1(1), 20–53.
  • Tran, H. M., Tsai, F. J., Lee, Y. L., Chang, J. H., Chang, T. Y., Chung, K. F., Kuo, H. P., Lee, K. Y., Chuang, K. J., & Chuang, H. C. (2023). The impact of air pollution on respiratory diseases in an era of climate change: a review of the current evidence. Science of the Total Environment, 898, Article 166340. https://doi.org/10.1016/j.scitotenv.2023.166340
  • Turgut, D., & Temiz, İ. (2015). Ankara'daki hava kirliliği için zaman serileri analizi ve tahmin: box-jenkins yaklaşımı. Alphanumeric Journal, 3(2), 131–138. http://doi.org/10.17093-aj.2015.3.2.5000148347-270497.pdf
  • Türkiye İstatistik Kurumu. (2024a, Temmuz 9). Dünya nüfus günü, 2024. https://data.tuik.gov.tr/Bulten/Index?p=Dunya-Nufus-Gunu-2024-53680
  • Türkiye İstatistik Kurumu. (2024b, Şubat 6). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684
  • Türkoğlu, N., Aydın, O., Duman, N., & Çiçek, İ. (2016). Türkiye’de yağışın farklı mekânsal enterpolasyon yöntemleriyle karşılaştırılması. Journal of Human Science, 13(3), 5636–5659. http://doi.org/10.14687/jhs.v13i3.4173
  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Wiley.
  • World Health Organization. (2021, October 21). Air pollution causes 13 deaths per minute worldwide. https://www.who.int/multi-media/details/air-pollution-climate-change
  • World Health Organization. (2023, January 26). World Health Organization (WHO) air quality guidelines (AQGs) and estimated reference levels (RLs). https://www.eea.europa.eu/publications/status-of-air-quality-in-Europe-2022/europes-air-quality-status-2022/world-health-organization-who-air
  • Van de Kassteele, J., Stein, A., Dekkers, A. L. M., & Velders, G. J. M. (2009). External drift kriging of NOX concentrations with dispersion model output in a reduced air quality monitoring network. Environmental and Ecological Statistics, 16(3), 321–339. http://doi.org/10.1007/s10651-007-0052-x
  • Yan, J., Chen, W. Y., Zhang, Z., Zhao, W., Liu, M., & Yin, S. (2024). Mitigating PM2.5 exposure with vegetation barrier and building designs in urban open-road environments based on numerical simulations. Landscape and Urban Planning, 241, 104918, 1–14. https://doi.org/10.1016/j.landurbplan.2023.104918

Ankara’da Partikül Madde (PM10) ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi

Year 2025, Volume: 11 Issue: 1, 249 - 267, 27.01.2025
https://doi.org/10.21324/dacd.1533641

Abstract

Türkiye’de hava kirliliği, özellikle büyük şehirlerde, nüfus artışı, plansız kentleşme, sanayi ve enerji tesislerindeki artış nedeniyle ciddi bir sorun haline gelmiştir. Partikül Madde (PM10) ve Kükürt Dioksit (SO2) konsantrasyonları, sanayi ve enerji üretimindeki yüksek emisyonlar sonucu hava kalitesini önemli ölçüde bozmaktadır. Hava kirliliği sorunuyla karşılaşan büyük şehirlerden biri olan Ankara, 2022 Türkiye Çevre Sorunları ve Öncelikleri Değerlendirme Raporu'nda hava kirliliğinin öncelikli sorunlar arasında ikinci sırada yer aldığı belirtilmiştir. Bu çalışmanın amacı, 2011–2014 yılları arasında Ankara’da PM10 ve SO2 konsantrasyonlarının, meteorolojik faktörlerin etkisi altında mekânsal-zamansal değişimlerini Kriging with External Drift (KED) yöntemi kullanarak incelemektir. 2011 yılında, PM10 ve SO2 konsantrasyon değerleri, diğer yıllara göre daha düşük seviyelerde olup, Dünya Sağlık Örgütü (World Health Organization, WHO) tarafından belirlenen yıllık konsantrasyon değerlerinin üzerinde kalmıştır. 2012 ve 2013 yıllarında, PM10 ve SO2 konsantrasyonlarında artış gözlemlenmiş ve şehrin farklı bölgelerinde değişkenlik göstermiştir. 2014 yılında, artan yağış ve sıcaklık değerleri ile birlikte, PM10 ve SO2 konsantrasyonlarında dikkat çekici bir azalma yaşanmıştır. PM10 ve SO2 konsantrasyonlarına ait tahmin modellerinin performansı değerlendirildiğinde, PM10 modelinin %66, SO2 modelinin %78 oranında açıklayıcı güce sahip olduğu görülmektedir. PM10 ve SO2 konsantrasyonlarının meteorolojik faktörler kullanılarak yapılan mekânsal-zamansal KED analizi, hava kirliliğinin değişimlerini anlamak ve mekânsal değişkenler arasındaki ilişkileri ile zaman içindeki etkileşimleri kavrayabilmek açısından önemlidir.

Ethical Statement

Yok

Supporting Institution

Yok

Project Number

Yok

Thanks

Bu çalışma, 18–21 Ekim 2017 tarihinde düzenlenen “International Symposium on GIS Applications in Geography and Geosciences’da” bildiri olarak sunulmuştur.

References

  • Adhikary, S. K., Muttil, N., & Yilmaz, A. G. (2017). Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrological Process, 31(12), 2129–2315. https://doi.org/10.1002/hyp.11163
  • Akbal, Y., & Ünlü, K. D. (2022). A deep learning approach to model daily particular matter of Ankara: key features and forecasting. International Journal of Environmental Science and Technology, 19, 5911–5927. https://doi.org/10.1007/s13762-021-03730-3
  • Alahmad, B., Khraishah, H., Althalji, K., MPhil, W. B., Al-Mulla, F., & Koutrakis, P. (2023). Connections between air pollution, climate change, and cardiovascular health. Canadian Journal of Cardiology, 39(9), 1182–1190. https://doi.org/10.1016/j.cjca.2023.03.025
  • Arslan, H., Ağır, A., & Demir, G. (2024). Impacts of PM10 exposure on hospitalization for acute bronchitis in Ankara, Türkiye. Frontiers in Life Sciences and Related Technologies, 5(1), 1–5. https://doi.org/10.51753/flsrt.1322260
  • Arslan, M., & Dursun, D. (2024). Planlı gelişme alanlarının hava kirliliğine olası etkilerinin değerlendirilmesi. Doğal Afetler ve Çevre Dergisi, 10(1), 125–139. http://doi.org/10.21324/dacd.1360742
  • Aydın, O., & Özgür, E. M. (2009). Ankara’nın kentsel gelişiminin uzaktan algılama ve coğrafi bilgi sistemleriyle ölçülmesi. e-Journal of New World Sciences Academy Nature Sciences, 4(4), 215–242.
  • Aydin, O., & Çiçek, I. (2015). Geostatistical interpolation of precipitation in Turkey. Lambert Academic Publishing.
  • Aydın, N. (2023). Investigating the Relationship between urban environment, air quality and childhood asthma: the case of Ankara. [Doctoral dissertation, Middle East Technical University]. OpenMETU. https://open.metu.edu.tr/handle/11511/102564
  • Beauchamp, M., & Bessagnet, B. (2023). An iterative optimization scheme to accommodate inequality constraints in air quality geostatistical estimation of multivariate PM. Heliyon, 9, Article e17413. https://doi.org/10.1016/j.heliyon.2023.e17413
  • Bozdağ, A., Dokuz, Y., & Gökçek, Ö. B. (2020). Spatial prediction of PM10 concentration using machine learning algorithms in Ankara, Turkey. Environmental Pollution, 263, Article 114635. https://doi.org/10.1016/j.envpol.2020.114635
  • Butenko, O., & Topchıy, A. (2023). Analysis of pollutants in air within the territory of Ukraine using geostatistical methods. Radioelectronic and Computer Systems, 3(107), 226–237. http://doi.org/0.32620/reks.2023.3.18 Breeze Technologies. (2021). The new 2021 WHO air quality guideline limits. Breeze Tech. https://www.breeze-technologies.de/blog/new-2021-who-air-quality-guideline-limits/
  • Cenlin, H., Rajesh, K., Wenfu, T., Gabriele, P., Yangyang, X., Yun, Q., & Guy, B. (2024). Air pollution interactions with weather and climate extremes: current knowledge, gaps, and future directions. Current Pollution Reports, 10(3), 430–442. http://doi.org/10.1007/s40726-024-00296-9
  • Çevre ve Şehircilik Bakanlığı. (2013). Kentlerde hava kalitesi değerlendirme sisteminin geliştirilmesi projesi (KENTAIR), Ankara hava kalitesi değerlendirme raporu. https://webdosya.csb.gov.tr/db/cygm/editordosya/Ankara%20Kentair%20Raporu.pdf
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (2022). Türkiye çevre sorunları ve öncelikleri değerlendirme raporu. https://webdosya.csb.gov.tr/db/ced/icerikler/turk-ye-cevre-sorunlari-ve-oncel-kler-_2022_3_ver3.logoduzenlendi 20230901135641.pdf
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (t.y.). Ulusal hava kalite izleme ağı. https://sim.csb.gov.tr/Services/AirQuality
  • Delbari, M., Afrasiab, P., & Jahani, S. (2013). Spatial interpolation of monthly and annual rainfall in northeast of Iran. Meteorology and Atmospheric Physics, 122(1), 103–113. https://doi.org/10.1007/s00703‐013‐0273‐5 Demuzere, M., Trigo, R. M., Vila-Guerau de Arellano, J., & van Lipzig, N. P. M. (2009). The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site. Atmospheric Chemistry and Physics, 9, 2695–2714.
  • Erol, O., (1968). The growth of Ankara city and the geomorphology of its site. Colloque İnternational de Gèographie Appliquèe, 48, 231–245.
  • Eshraghi, M. (2023). Automatic modelling and mapping of Paticular Matter (PM10) [Master dissertation, University of Twente]. Essay.utwente.n. https://purl.utwente.nl/essays/93966
  • Fan, H., Zhao, C., & Yang, Y. (2020). A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmospheric Environment, 220, Article 117066. https://doi.org/10.1016/j.atmosenv.2019.117066
  • Feng, T., Sun, Y., Shi, Y., Ma, J., Feng, C., & Chen, Z. (2024). Air pollution control policies and impacts: A review. Renewable and Sustainable Energy Reviews, 191, Article 11407. https://doi.org/10.1016/j.rser.2023.114071
  • Genc, D. D., Yesilyurt, C., & Tuncel, G. (2010). Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere. Environmental Monitoring and Assessment, 166, 11–27. http://doi.org/0.1007/s10661-009-0981-y
  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press.
  • Greenpeace. (2022, Ekim 13). Türkiye’de Hava Kirliliği Yükü–2021 Raporu. https://www.greenpeace.org/turkey/raporlar/turkiyede-hava-kirliligi-yuku-2021/
  • Hengl, T., Heuvelink, G., & Rossiter, D. G. (2007). About regression-kriging: From equations to case studies. Computers & Geosciences, 33(10), 1301–1315. http://doi.org/10.1016/j.cageo.2007.05.001
  • Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., & Brasseur, O. (2005). A neural network forecast for Daily average PM10 concentrations in Belgium. Atmospheric Environment, 39, 3279–3289. http://doi/10.1016/j.atmosenv.2005.01.050
  • Idir, Y. M., Olivier, O., Judalet, V., Sagot, B., & Chatellier, P. (2021). Mapping urban air quality from mobile sensors using spatio-temporal geostatistics. Sensors, 21, Article 4717. http://doi.org/10.3390/s21144717
  • Ignaccolo, R., Mateu, J., & Giraldo, R. (2014). Kriging with external drift for functional data for air quality monitoring. Stochastic Environmental Research and Risk Assessment, 28, 1171–1186. http://doi.org/10.1007/s00477-013-0806-y
  • Isaaks, E., & Srivastava, R. (1989). An introduction to applied geostatistics. Oxford University Press.
  • İpek, Z., & Uyanık, İ. (2022). Sanayi kaynaklı noktasal emisyonların hava kalitesine katkısı: Kayseri İli örneği. Doğal Afetler ve Çevre Dergisi, 8(2), 341–350. http://doi.org/10.21324/dacd.1056806
  • Koçak, E., & Balcılar, İ. (2024). Spatio-temporal variation of particulate matter with health impact assessment and long-range transport case study: Ankara, Türkiye. Science of the Total Environment, 938, Article 173650. https://doi.org/10.1016/j.scitotenv.2024.173650
  • Kongsanun, C., Chutsagulprom, N., & Moonchai, S. (2024). Spatio-temporal dual kriging with adaptive coefficient drift function. Mathematics, 12, 400, 1–21. http://doi.org/10.3390/math12030400
  • Köse, Y., Şahin, Ş., & Müftüoğlu, V. (2024). Ankara Çayı Havzası’nın kentsel planlama kapsamında taşkın duyarlılığı açısından değerlendirilmesi. İdealkent, 43(16), 512–543. http://doi.org/10.31198/idealkent.1360600
  • Liang, F., Gao, M., Xiao, Q., Carmichael, G. R., Pan, X., & Liu, Y. (2017). Evaluation of a data fusion approach to estimate daily PM2.5 levels in North China. Environmental Research, 158, 54–60. https://doi.org/10.1016/j.envres.2017.06.001
  • Lichtenstern, A. (2013). Kriging methods in spatial statistics [Bachelor’s dissertation, Technische Universität München]. mediatum.ub.tum.de. https://www.semanticscholar.org/paper/Kriging-methods-in-spatial-statistics-Lichtenstern/129ba812abb cb734a973e51f102d60227d5e6f6e
  • Meteoroloji Genel Müdürlüğü. (t.y.). İllere ait mevsim normalleri (1991–2020). https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=ANKARA
  • Oral, H. V., Ulusoy, İ., Özelkan, E., & Toros, H. (2015, April 28–30). Ankara ve çevre illerde hava kirliliği dağılımı ve emisyon envanterinin belirlenmesi [Conference presentation]. VII. Atmospheric Science Symposium, İstanbul, Türkiye.
  • Otto, P., Moro, A. F., Rodeschini, J., Shaboviq, Q., Ignaccolo, R., Golini, N., Cameletti, M., Maranzano, P., Finazzi, F., & Fassò, A. (2024). Spatiotemporal modelling of PM2.5 concentrations in Lombardy (Italy): a comparative study. Environmental and Ecological Statistics, 31, 245–272. https://doi.org/10.1007/s10651-023-00589-0
  • Özgür, E.M. (1995). Türkiye’deki iç göçlerde Ankara İli’nin yeri. Ankara Üniversitesi Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 4, 63–76.
  • Pearce, J. L., Rathbun, S. L., Aguilar-Villalobos, M., & Naeher, L. P. (2009). Characterizing the spatiotemporal variability of PM2.5 in Cusco, Peru using kriging with external drift. Atmospheric Environment, 43, 2060–2069. http://doi.org/10.1016/j.atmosenv.2008.10.060
  • Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computer Geoscience, 30(7), 683–691.
  • Pebesma, E. (2012). Spacetime: spatio-temporal data in R. Journal of Statistical Software, 51(7), 1–30
  • Pei, H., & Shiliang, W. (2016). Long-term changes in extreme air pollution meteorology and the implications for air quality. Scientific Reports, 6, Article 23792. http://doi.org/10.1038/srep23792
  • Pinho-Gomes, A.-C., Roaf, E., Fuller, G., Fowler, D., Lewis, A., ApSimon, H., Noakes, C., Johnstone, P., & Holgate, S. (2023). Air pollution and climate change. The LANCET Planetary Health, 7(9), 7–8. https://doi.org/10.1016/S2542-5196(23)00189-4
  • R Development Core Team. (2016). The R project for statistical computing. https://www.r-project.org/
  • Raja, N. B, & Aydin, O. (2017). New approaches to flash flood forecasting in the Mediterranean Region. Lambert Academic Publishing.
  • Raja, N. B., Aydin, O., Türkoğlu, N., & Çiçek, İ. (2018). Characterising the seasonal variations and spatial distribution of ambient PM10 in urban Ankara, Turkey. Environmental Processes, 5(1), 349–362. http://doi.org/10.1007/s40710-018-0305-8
  • Rahaman, S.N., Nelson, J., Ali, A.A.B., Shermin, N., Pricope, N. G., Kafy, A. A., Sabuj, M. S., & Toa, S. S. (in press). A multivariate geostatistical framework to assess the spatio-temporal dynamics of air pollution and land surface temperature in Bangladesh. Earth Systems Environment. https://doi.org/10.1007/s41748-024-00418-9
  • Rahim, U. A., & Masseran, N. (2023). State-space time series analysis on air pollution data. Environment and Ecology Research, 11(1), 155–164. http://doi.org/10.13189/eer.2023.110111
  • Ramos, Y., St-Onge, B., Blanchet, J-P., & Smargiassi, A. (2016). Spatio-temporal models to estimate daily concentrations of fine particulate matter in Montreal: Kriging with external drift and inverse distance-weighted approaches. Journal of Exposure Science and Environmental Epidemiology, 26, 405–414. https://doi.org/10.1038/jes.2015.79
  • Rusmilli, S. H. A., Hamzah, F. M., Choy, L. K., Azizah, R., Sulistyorini, L., Yudhastuti, R., Diyanah, K. C., Adriyani, R., & Latif, M. T. (2023). Ground-level particulate matter (PM2.5) concentration mapping in the central and south zones of Peninsular Malaysia using a geostatistical approach. Sustainability, 15(23), Article 1616. https://doi.org/10.3390/su152316169
  • Ulutas, K., Abujayyab, S. K. M., & Abu Amr, S. (2021). Evaluation of the major air pollutants levels and its interactions with meteorological parameters in Ankara. Mühendislik Bilimleri ve Tasarım Dergisi, 9(4), 1284–1295. http://doi.org/10.21923/jesd.939724
  • Sahin, M., Incecik, S., Topcu, S., & Yildirim, A. (2001). Analysis of atmospheric conditions during air pollution episodes in Ankara, Turkey. Journal of the Air & Waste Management Association, 51(7), 972–982. https://doi.org/10.1080/10473289.2001.10464334
  • Shaman, J., & Kohn, M., (2009). Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences, 106(9), 3243–3248. https://doi.org/10.1073/pnas.0806852106
  • Temiz Hava Hakkı Platformu. (2023, Mart). Kara rapor 2022: hava kirliliği ve sağlık etkileri. https://www.temizhavahakki.org/wp-content/uploads/2023/03/KaraRapor_v6.pdf
  • Toros, H., Bağış, S., & Gemici, Z. (2018). Ankara’da hava kirliliği mekânsal dağılımının modellenmesi. Ulusal Çevre Bilimleri Araştırma Dergisi, 1(1), 20–53.
  • Tran, H. M., Tsai, F. J., Lee, Y. L., Chang, J. H., Chang, T. Y., Chung, K. F., Kuo, H. P., Lee, K. Y., Chuang, K. J., & Chuang, H. C. (2023). The impact of air pollution on respiratory diseases in an era of climate change: a review of the current evidence. Science of the Total Environment, 898, Article 166340. https://doi.org/10.1016/j.scitotenv.2023.166340
  • Turgut, D., & Temiz, İ. (2015). Ankara'daki hava kirliliği için zaman serileri analizi ve tahmin: box-jenkins yaklaşımı. Alphanumeric Journal, 3(2), 131–138. http://doi.org/10.17093-aj.2015.3.2.5000148347-270497.pdf
  • Türkiye İstatistik Kurumu. (2024a, Temmuz 9). Dünya nüfus günü, 2024. https://data.tuik.gov.tr/Bulten/Index?p=Dunya-Nufus-Gunu-2024-53680
  • Türkiye İstatistik Kurumu. (2024b, Şubat 6). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684
  • Türkoğlu, N., Aydın, O., Duman, N., & Çiçek, İ. (2016). Türkiye’de yağışın farklı mekânsal enterpolasyon yöntemleriyle karşılaştırılması. Journal of Human Science, 13(3), 5636–5659. http://doi.org/10.14687/jhs.v13i3.4173
  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Wiley.
  • World Health Organization. (2021, October 21). Air pollution causes 13 deaths per minute worldwide. https://www.who.int/multi-media/details/air-pollution-climate-change
  • World Health Organization. (2023, January 26). World Health Organization (WHO) air quality guidelines (AQGs) and estimated reference levels (RLs). https://www.eea.europa.eu/publications/status-of-air-quality-in-Europe-2022/europes-air-quality-status-2022/world-health-organization-who-air
  • Van de Kassteele, J., Stein, A., Dekkers, A. L. M., & Velders, G. J. M. (2009). External drift kriging of NOX concentrations with dispersion model output in a reduced air quality monitoring network. Environmental and Ecological Statistics, 16(3), 321–339. http://doi.org/10.1007/s10651-007-0052-x
  • Yan, J., Chen, W. Y., Zhang, Z., Zhao, W., Liu, M., & Yin, S. (2024). Mitigating PM2.5 exposure with vegetation barrier and building designs in urban open-road environments based on numerical simulations. Landscape and Urban Planning, 241, 104918, 1–14. https://doi.org/10.1016/j.landurbplan.2023.104918
There are 65 citations in total.

Details

Primary Language Turkish
Subjects Air Pollution Modelling and Control
Journal Section Research Article
Authors

Olgu Aydın 0000-0001-8220-6384

Nussaibah B. Raja 0000-0002-0000-3944

Project Number Yok
Submission Date August 15, 2024
Acceptance Date September 20, 2024
Early Pub Date January 25, 2025
Publication Date January 27, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Aydın, O., & Raja, N. B. (2025). Ankara’da Partikül Madde (PM10) ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi. Doğal Afetler Ve Çevre Dergisi, 11(1), 249-267. https://doi.org/10.21324/dacd.1533641
AMA Aydın O, Raja NB. Ankara’da Partikül Madde (PM10) ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi. J Nat Haz Environ. January 2025;11(1):249-267. doi:10.21324/dacd.1533641
Chicago Aydın, Olgu, and Nussaibah B. Raja. “Ankara’da Partikül Madde (PM10) Ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi”. Doğal Afetler Ve Çevre Dergisi 11, no. 1 (January 2025): 249-67. https://doi.org/10.21324/dacd.1533641.
EndNote Aydın O, Raja NB (January 1, 2025) Ankara’da Partikül Madde (PM10) ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi. Doğal Afetler ve Çevre Dergisi 11 1 249–267.
IEEE O. Aydın and N. B. Raja, “Ankara’da Partikül Madde (PM10) ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi”, J Nat Haz Environ, vol. 11, no. 1, pp. 249–267, 2025, doi: 10.21324/dacd.1533641.
ISNAD Aydın, Olgu - Raja, Nussaibah B. “Ankara’da Partikül Madde (PM10) Ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi”. Doğal Afetler ve Çevre Dergisi 11/1 (January2025), 249-267. https://doi.org/10.21324/dacd.1533641.
JAMA Aydın O, Raja NB. Ankara’da Partikül Madde (PM10) ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi. J Nat Haz Environ. 2025;11:249–267.
MLA Aydın, Olgu and Nussaibah B. Raja. “Ankara’da Partikül Madde (PM10) Ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi”. Doğal Afetler Ve Çevre Dergisi, vol. 11, no. 1, 2025, pp. 249-67, doi:10.21324/dacd.1533641.
Vancouver Aydın O, Raja NB. Ankara’da Partikül Madde (PM10) ve Kükürt Dioksit (SO2) Konsantrasyonlarının İklim Parametreleri İle Mekânsal-Zamansal Analizi. J Nat Haz Environ. 2025;11(1):249-67.