Research Article
BibTex RIS Cite

Yomra Deresi Havzasının Taşkın Maruziyet Analizi

Year 2026, Volume: 12 Issue: 1, 111 - 129, 25.01.2026
https://doi.org/10.21324/dacd.1725047

Abstract

Küresel iklim değişikliği ve nüfus artışına bağlı olarak meydana gelen taşkınların sayısı ve sıklığı artmaktadır. Türkiye, topografya ve iklim özellikleri nedeni ile taşkın olaylarının sık yaşandığı ülkelerden birisidir. Taşkın sayısında meydana gelen artış, taşkınlara ilişkin duyarlılık, maruziyet ve risk çalışmalarının çoğalmasına neden olmuştur. Özellikle uzaktan algılama ve bilgisayar teknolojilerindeki gelişmelere bağlı olarak coğrafi bilgi sistemlerinin yaygınlaşması, taşkınlara ilişkin çalışmalarda kullanılabilecek yöntemlerin ve veri kaynaklarının zenginleşmesini sağlamıştır. Bu çalışmada Türkiye’de taşkınların en sık meydana geldiği havzalardan olan Doğu Karadeniz Havzası’nda Trabzon il sınırları içerisinde bulunan Yomra Deresi havzasının taşkın maruziyet analizi yapılmıştır. Maruziyet analizi için öncelikle havzanın taşkın duyarlılık durumu havzaya ait akarsuya yakınlık, yükselti, eğim, litoloji, bakı, arazi kullanımı, toprak ve Topografik Nemlilik İndeksi (TNİ) verileri kullanılarak Analitik Hiyerarşi Yöntemi (AHY) ile belirlenmiştir. Taşkın duyarlılık durumumun belirlenmesinin ardından dasimetrik yöntem ile havzada yer alan mahallelere ait 2024 yılı nüfus verisi ve havzaya ait yapı ve bağımsız bölüm verisi kullanılarak havzadaki nüfus dağılış verisi elde edilmiştir. Çalışma sonucunda havzada ikamet eden 9.680 kişiden 1.217’sinin (%12,6) çok yüksek, 214’ünün (%2,2) yüksek, 1.769’unun (%18,3) orta, 5.585’inin (%57,7) düşük ve 895’inin (%9,2) de çok düşük taşkın duyarlılık sınıfında yer aldığı belirlenmiştir.

References

  • Ahmed, R., Jarin, N. Z., & Rahman, O. (2024). Spatiotemporal Dynamics of Flood Exposure in Bangladesh: A GIS and Remote Sensing Based Approach. In B. Biswas & B. B. Ghute (Eds.), Flood Risk Management Assessment and Strategy (pp. 1–22). Springer Nature.
  • Anadolu Ajansı. (2019). 30 Temmuz 2025’te https://www.aa.com.tr/tr/turkiye/trabzonda-saganak-nedeniyle-yol-coktu/1511275 adresinden alındı.
  • Anadolu Ajansı. (2024). 30 Temmuz 2025’te https://www.aa.com.tr/tr/gundem/trabzonda-saganak-etkili-oldu/3336086 adresinden alındı.
  • Avci, V. (2025). Doğu Karadeniz Bölümü’nde Meydana Gelen Sel ve Taşkınların Analizi (1955–2022). Özgür Yayınları.
  • Avcı, V., & Kıranşan, K. (2022). Analitik hiyerarşi süreci (AHS) ve coğrafi bilgi sistemleri (CBS) ile Bingöl Merkez İlçe’nin taşkın duyarlılık analizi. In B. Dülek (Ed.), Sosyal, beşeri ve idari bilimler alanında uluslararası araştırmalar VII (ss. 45–69). Eğitim Yayınevi.
  • Avci, V., & Ünsal, Ö. (2023). A morphometric approach to Bozkurt (Kastamonu-Türkiye) flood. Doğal Afetler ve Çevre Dergisi, 9(2), 216–239. https://doi.org/10.21324/dacd.1210797
  • Baalousha, H. M., Younes, A., Yassin, M. A., & Fahs, M. (2023). Comparison of the fuzzy analytic hierarchy process (F-AHP) and fuzzy logic for flood exposure risk assessment in arid regions. Hydrology, 10(7), Article 136. https://doi.org/10.3390/hydrology10070136.
  • Balk, D. L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., & Nelson, A. (2006). Determining global population distribution: methods, applications and data. Advances in parasitology, 62, 119–156. https://doi.org/10.1016/S0065-308X(05)62004-0
  • Bayazıt, Y. (2021). Bilecik İlindeki Şehirleşmenin Taşkın Riski Üzerindeki Etkilerinin Araştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(1), 217–227. https://doi.org/10.35193/bseufbd.877539
  • Bernhofen, M. V., Trigg, M. A., Sleigh, P. A., Sampson, C. C., & Smith, A. M. (2021). Global flood exposure from different sized rivers. Natural Hazards and Earth System Sciences, 21(9), 2829–2847. https://doi.org/10.5194/nhess-21-2829-2021
  • Bertsch, R., Glenis, V., & Kilsby, C. (2022). Building level flood exposure analysis using a hydrodynamic model. Environmental Modelling & Software, 156, Article 105490. https://doi.org/10.1016/j.envsoft.2022.105490
  • Bonacci, O., Ljubenkov, I., Roje-Bonacci, T., (2006). Karst flash floods: an example from the Dinaric karst (Croatia). Natural Hazards and Earth System Sciences, 6, 195–203. https://doi.org/10.5194/nhess-6-195-2006
  • Boultif, M., Kheloufi, B., Hachemi, A. & Mimeche, L. (2024). GIS-Based Multi-criteria Decision-Making Techniques and Analytical Hierarchical Process for Flash Flood Risk Assessment Due to a Possible Dam Break in Urban Arid Environment: Case Study of Biskra City, Southern Algeria. Journal of the Indian Society of Remote Sensing, 52, 1085–1097.
  • Coşkun, M., & Ortaç, G. (2022). Filyos Çayı Havzası'nın (Karabük Merkez İlçe-Gökçebey) Çok Ölçütlü Karar Analizi Yöntemiyle Taşkın Risklerinin Belirlenmesi. Doğu Coğrafya Dergisi, 27(47), 15–27.
  • Das, Sumit. (2018). Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India, Arabian Journal of Geosciences, 11, Article 576. https://doi.org/10.1007/s12524-024-01860-y
  • Dou, X., Song, J., Wang, L., Tang, B., Xu, S., Kong, F. & Jiyang, X. (2017). Flood risk assessment and mapping based on a modified multiparameter flood hazard index model in the Guanzhong Urban Area, China. Stochastic Environmental Research and Risk Assessment, 32, 1131–1146. https://doi.org/10.1007/s00477-017-1429-5
  • De Moel, H., Aerts, J. C., & Koomen, E. (2011). Development of flood exposure in the Netherlands during the 20th and 21st century. Global Environmental Change, 21(2), 620–627. https://doi.org/10.1016/j.gloenvcha.2010.12.005
  • Dey, H., Shao, W., Haque, M. M., & VanDyke, M. (2024). Enhancing Flood Risk Analysis in Harris County: Integrating Flood Susceptibility and Social Vulnerability Mapping. Journal of Geovisualization and Spatial Analysis, 8(1), Article 19. https://doi.org/10.1007/s41651-024-00181-5
  • Dhieb, M. (2022). A Bivariate Dasymetric Population Map of Saudi Arabia. Current Urban Studies, 10(4), 673–696.
  • Duman, N., & İrcan, M. R. (2022). Coğrafi Bilgi Sistemleri tabanlı Çankırı Merkez ilçesinin taşkın duyarlılık analizi. Jeomorfolojik Araştırmalar Dergisi, 9, 50–66. https://doi.org/10.46453/jader.1165963
  • Dursun, Y. (2022). Coğrafi bilgi sistemi ile taşkın risk analizi: Osmaneli/Bilecik örneği [Yüksek lisans tezi, Konya Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Ertan, A., Özelkan, E., & Karaman, M. (2021). Analitik Hiyerarşi Süreci Kullanılarak Coğrafi Bilgi Sistemleri Ortamında Sel ve Taşkın Alanlarının Belirlenmesi: Çanakkale Karamenderes Havzası Örneği. Journal of Research in Atmospheric Science, 3(2), 1–9.
  • Gerger, R., & Tanrıverdi, M. (2018, 17–19 Ekim). Coğrafi bilgi sistemleri (CBS) tabanlı çok ölçütlü karar analizi ile Şanlıurfa il merkezinin taşkın alanlarının belirlenmesi [Konferans bildirisi]. 7. Uzaktan Algılama & CBS Sempozyumu (UZAL-CBS 2018), Anadolu Üniversitesi, Eskişehir.
  • Ghosh, A., & Kar, S. K. (2018). Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Natural Hazards, 94(1), 349–368. https://doi.org/10.1007/s11069-018-3392-y
  • Gökçeoğlu, C., Sönmez, H., Nefiseoğlu, H. A., Duman, T. Y. & Can, T. (2005). The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering Geology, 81, 65–83.
  • Haghizadeh, A., Fathiganji, R., Sohrabi, E., Lotfi, A., & Ghasemi, L. (2025). A framework for flood risk zoning and prioritization combining maximum entropy and game theory. Scientific Reports, 15(1), Article 24153. https://doi.org/10.1038/s41598-025-08220-x
  • Hamidi, A. R., Jing, L., Shahab, M., Azam, K., Atiq Ur Rehman Tariq, M., & Ng, A. W. (2022). Flood exposure and social vulnerability analysis in rural areas of developing countries: An empirical study of Charsadda District, Pakistan. Water, 14(7), Article 1176. https://doi.org/10.3390/w14071176
  • Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., & Dlala, M. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12(21), Article 653. https://doi.org/10.1007/s12517-019-4754-9
  • He, B., Gilligan, J. M., & Camp, J. V. (2024). Incorporating spatial autocorrelation in dasymetric mapping: A hierarchical Poisson spatial disaggregation regression model. Applied Geography, 169, Article 103333. https://doi.org/10.1016/j.apgeog.2024.103333
  • Hosseini, F. S., Choubin, B., Mosavi, A., Nabipour, N., Shamshirband, S., Darabi, H., & Haghighi, A. T. (2020). Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Science of the Total Environment, 711, Article 135161. https://doi.org/10.1016/j.scitotenv.2019.135161
  • Işık, F., Bahadır, M., Zeybek, H. İ., & Çağlak, S. (2020). Karadere Çayı Taşkını (Araklı-Trabzon). Mavi Atlas, 8(2), 526–547.
  • Islam, A., Ghosh, S., & Sarkar, M. (2024). Assessing livelihood vulnerability of rural communities in the wake of recurrent tropical flood hazards in India. Natural Hazards, 121, 677–704. https://doi.org/10.1007/s11069-024-06847-z
  • Janizadeh, S., Pal, S. C., Saha, A., Chowdhuri, I., Ahmadi, K., Mirzaei, S., Mosavi, A. H., & Tiefenbacher, J. P. (2021). Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. Journal of Environmental Management, 298, Article 113551. https://doi.org/10.1016/j.jenvman.2021.113551
  • Karakoca, E., & Ünver, A. (2024). Analitik hiyerarşi süreci ve coğrafi bilgi sistemleri kullanarak Eşen Çayı Havzası’nda taşkın riski değerlendirmesi ve haritalandırılması. Geomatik, 10(1), 127–143. https://doi.org/10.29128/geomatik.1542251
  • Karakuş, C. B., & Ceylan, Ş. (2022). Coğrafi Bilgi Sistemi Tabanlı Analitik Hiyerarşi Süreci Kullanılarak Taşkın Tehlike Haritalaması. Mühendislik Bilimleri ve Tasarım Dergisi, 10(4), 1155–1173. https://doi.org/10.21923/jesd.1049464
  • Kaya, Ç. M. (2022). Taşkın duyarlılık haritalarının oluşturulmasında kullanılan yöntemler. Türk Uzaktan Algılama ve CBS Dergisi, 3(2), 191–209. https://doi.org/10.48123/rsgis.1129606
  • Köy Hizmetleri Genel Müdürlüğü. (1987). Türkiye Büyük Toprak Grupları Haritası. Köy Hizmetleri Genel Müdürlüğü, Ankara.
  • Köse, M., Tate, N., & Tansey, K. (2017). İkili eşleme ve hacimsel nüfus tahmini teknikleri kullanarak nüfus dağılışının haritalanması. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 19(2), 339–363.
  • Kuruüzüm, A., & Atsan, N. (2001). Analitik Hiyerarşi Yöntemi ve İşletmecilik Alanındaki Uygulamaları. Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 1, 83–105.
  • Kuşcu, İ., & Özdemir, H. (2023). Taşkın du¬yarlılık analizinde kullanılan parametreler üzerine bir değerlendirme. Türk Coğrafya Dergisi (84), 67–83. https://doi.org/10.17211/tcd.1345962
  • Maden Tetkik ve Arama Genel Müdürlüğü. (2025). 1/25.000 Ölçekli G43b1, G43b2, G43b3, G43b4 Jeoloji Haritaları. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Meteoroloji Genel Müdürlüğü. (2024). Trabzon İklim Sınıflandrıması. 20 Temmuz 2025’te https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=TRABZON adresinden alındı.
  • Mohanty, M. P., & Simonovic, S. P. (2021). Understanding dynamics of population flood exposure in Canada with multiple high-resolution population datasets. Science of The Total Environment, 759, Article 143559. https://doi.org/10.1016/j.scitotenv.2020.143559
  • Nyarko, B. K. (2002). Application of a rational model in GIS for flood risk assessment in Accra, Ghana. Journal of Spatial Hydrology, 2, 1–14.
  • Ortakavak, Z., Çabuk, S. N., Cetin, M., Senyel Kurkcuoglu, M. A., & Cabuk, A. (2020). Determination of the nighttime light imagery for urban city population using DMSP-OLS methods in Istanbul. Environmental monitoring and assessment, 192(12), Article 790. https://doi.org/10.1007/s10661-020-08735-y
  • Özelkan, E., & Eren, E. (2024). Analitik Hiyerarşi Süreci Yöntemi Kullanarak Çanakkale-Kepez Beldesi Sel ve Taşkın Risk Analizi. Bilim-Teknoloji-Yenilik Ekosistemi Dergisi, 5(2), 123–137.
  • Özşahin, E., & Kaymaz, Ç. K. (2013). Taşkın Riskinin Değerlendirmesine Bir Örnek: Amik Ovası Taşkınları. Electronic Turkish Studies, 8(8), 2021–2039. http://dx.doi.org/10.7827/TurkishStudies.4785
  • Pala, O. N., Daloglu Cetinkaya, I., & Yazar, M. (2025). Urban Flood Exposure and Vulnerability: Insights From Pendik District of Istanbul. Journal of Flood Risk Management, 18(1), Article e70000. https://doi.org/10.1111/jfr3.70000
  • Pambuku, A., Elia, M., Gardelli, A., Giannico, V., Sanesi, G., Bergantino, A. S., Intini, M., & Lafortezza, R. (2024). Assessing urbanization dynamics using a pixel-based nighttime light indicator. Ecological Indicators, 166, Article 112486. https://doi.org/10.1016/j.ecolind.2024.112486
  • Pant, R., Thacker, S., Hall, J. W., Alderson, D., & Barr, S. (2018). Critical infrastructure impact assessment due to flood exposure. Journal of Flood Risk Management, 11(1), 22–33. https://doi.org/10.1111/jfr3.12288
  • Papilloud, T., Röthlisberger, V., Loreti, S., & Keiler, M. (2020). Flood exposure analysis of road infrastructure–Comparison of different methods at national level. International journal of disaster risk reduction, 47, Article 101548. https://doi.org/10.1016/j.ijdrr.2020.101548
  • Park, J. (2020, September 15–18). Estimating hourly population distribution patterns at high spatiotemporal resolution in urban areas using geo-tagged tweets and dasymetric mapping [Conference presentation]. 11th International Conference on Geographic Information Science, Poznań, Poland.
  • Pathan, A. I., Girish Agnihotri, P., Said, S., & Patel, D. (2022). AHP and TOPSIS based flood risk assessment-a case study of the Navsari City, Gujarat, India. Environmental Monitoring and Assessment, 194(7), Article 509. https://doi.org/10.1007/s10661-022-10111-x
  • Peng, Z., Wang, R., Liu, L., & Wu, H. (2020). Fine-scale dasymetric population mapping with mobile phone and building use data based on grid voronoi method. ISPRS International Journal of Geo-Information, 9(6), Article 344. https://doi.org/10.3390/ijgi9060344
  • Perazzini, S., Gnecco, G., & Pammolli, F. (2024). A catastrophe model approach for flood risk assessment of Italian municipalities. Annals of Operations Research. https://doi.org/10.1007/s10479-024-06060-y
  • Qiang, Y. (2019). Flood exposure of critical infrastructures in the United States. International Journal of Disaster Risk Reduction, 39, Article 101240. https://doi.org/10.1016/j.ijdrr.2019.101240
  • Ramkar, P., & Yadav, S. M. (2021). Flood risk index in data-scarce river basins using the AHP and GIS approach. Natural Hazards, 109(1), 1119–1140. https://doi.org/10.1007/s11069-021-04871-x
  • Rentschler, J., Salhab, M., & Jafino, B. A. (2022). Flood exposure and poverty in 188 countries. Nature communications, 13(1), Article 3527. https://doi.org/10.1038/s41467-022-30727-4
  • Saat, M. (2000). Çok Amaçlı Karar Vermede Bir Yaklaşım: Analitik Hiyerarşi Yöntemi. Gazi Üniversitesi İktisadi ve İdari Bilimler Dergisi. 2,149-162.
  • Saaty, T. L. (1980). The Analytic Hierarchy Process, McGraw-Hill Comp.
  • Saha, G., Kabir, M. N., Islam, M. S., Khandaker, A., & Chowdhury, P. (2024). Flash flood potential risk zonation mapping using GIS-based spatial multi-index model: a case study of Sunamganj District, Bangladesh. Arabian Journal of Geosciences, 17(3), Article 100. https://doi.org/10.1007/s12517-024-11907-6
  • Samanta, S., Koloa, C., Kumar Pal, D., & Palsamanta, B. (2016). Flood risk analysis in lower part of Markham river based on multi-criteria decision approach (MCDA). Hydrology, 3(3), Article 29. https://doi.org/10.3390/hydrology3030029
  • Smith, A., Bates, P. D., Wing, O., Sampson, C., Quinn, N., & Neal, J. (2019). New estimates of flood exposure in developing countries using high-resolution population data. Nature communications, 10(1), Article 1814. https://doi.org/10.1038/s41467-019-09282-y
  • Stefanidis, S., Alexandridis, V., & Theodoridou, T. (2022). Flood exposure of residential areas and infrastructure in Greece. Hydrology, 9(8), Article 145. https://doi.org/10.3390/hydrology9080145
  • Stefanidis, S., & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural hazards, 68(2), 569–585. https://doi.org/10.1007/s11069-013-0639-5
  • Sugianto, S., Deli, A., Miswar, E., Rusdi, M., & Irham, M. (2022). The effect of land use and land cover changes on flood occurrence in Teunom Watershed, Aceh Jaya. Land, 11(8), Article 1271. https://doi.org/10.3390/land11081271
  • Sun, P., Entress, R., Tyler, J., Sadiq, A. A., & Noonan, D. (2023). Critical public infrastructure underwater: the flood hazard profile of Florida hospitals. Natural Hazards, 117(1), 473–489. https://doi.org/10.1007/s11069-023-05869-3
  • Swain, D. L., Wing, O. E., Bates, P. D., Done, J. M., Johnson, K. A., & Cameron, D. R. (2020). Increased flood exposure due to climate change and population growth in the United States. Earth's Future, 8(11), Article e2020EF001778. https://doi.org/10.1029/2020EF001778
  • Şanlı, B., Can, M., & Aslan, S. T. (2025). Analitik Hiyerarşi Yöntemi ile Taşkın Riskinin Tespiti: Bursa İli İnegöl İlçesi Kalburt Deresi Örneği. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 39(1), 167–186. https://doi.org/10.20479/bursauludagziraat.1625180
  • Tanoue, M., Hirabayashi, Y., & Ikeuchi, H. (2016). Global-scale river flood vulnerability in the last 50 years, Scientific Reports, 6, Article 36021. https://doi.org/10.1038/srep36021
  • Taherizadeh, M., Niknam, A., Nguyen-Huy, T., Mezősi, G., & Sarli, R. (2023). Flash flood-risk areas zoning using integration of decision-making trial and evaluation laboratory, GIS-based analytic network process and satellite-derived information. Natural Hazards, 118(3), 2309–2335. https://doi.org/10.1007/s11069-023-06089-5
  • Taş, M. A., & Yanık, M. E. (2022). Analitik Hiyerarşi Süreci (Ahs) Metodu İle Behzat Deresi (Tokat) Havzası Taşkın Risk Analizi. Erzincan Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 15(2), 185–199. https://doi.org/10.46790/erzisosbil.1221464
  • Tate, E., Rahman, M. A., Emrich, C. T., & Sampson, C. C. (2021). Flood exposure and social vulnerability in the United States. Natural Hazards, 106(1), 435–457. https://doi.org/10.1007/s11069-020-04470-2
  • T.C. Tarım ve Orman Bakanlığı. (2020). Doğu Karadeniz Havzası Taşkın Yönetim Planı. 15 Haziran 2025’te https://www.tarimorman.gov.tr/SYGM/Belgeler/Ta%C5%9Fk%C4%B1n%20Y%C3%B6netim%20Planlar%C4%B1%2026.12.2022/DOGU_KARADENIZ_HAVZASI_Taskin_Yonetim_Plani.pdf adresinden alındı.
  • Tehrany, M. S., Jones, S., Shabani, F., Martínez-Álvarez, F., & Tien Bui, D. (2019). A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoretical and Applied Climatology, 137(1), 637–653. https://doi.org/10.1007/s00704-018- 2628-9
  • Thannoun, R. G., & Ismaeel, O. A. (2023, December 13–15). Flood risk vulnerability detection based on the developing topographic wetness index tool in geographic information system. [Conference presentation]. 3rd Scientific Conference of Iraqi Desert Geology, Ramadi, Iraq.
  • Thomas, B. E. O., Roger, J., Gunnell, Y., & Ashraf, S. (2023). A method for evaluating population and infrastructure exposed to natural hazards: tests and results for two recent Tonga tsunamis. Geoenvironmental disasters, 10(1), Article 4. https://doi.org/10.1186/s40677-023-00235-8
  • Ullah, N., Tariq, A., Qasim, S., Panezai, S., Uddin, M. G., Abdullah-Al-Wadud, M., & Ullah, S. (2024). Geospatial analysis and AHP for flood risk mapping in Quetta, Pakistan: a tool for disaster management and mitigation. Applied Water Science, 14(11), Article 236. https://doi.org/10.1007/s13201-024-02293-1
  • United Nations Office for Disaster Risk Reduction. (2017). The Sendai Framework Terminology on Disaster Risk Reduction. "Exposure". 21 Haziran 2025’te https://www.undrr.org/terminology/exposure adresinden alındı.
  • United Nations Office for Disaster Risk Reduction. (2020). Human Cost of Disasters An Overwiev of the Last 20 Years. 10 Eylül 2025’te https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019 adresinden alındı.
  • Ünal, A., Çamcı, K. G., & Tonyaloğlu, E. E. (2022). Çok kriterli karar analizi ile doğal afetlerde haritalama: Aydın ili sel-taşkın riski örneği. Ulisa: Uluslararası Çalışmalar Dergisi, 6(2), 136–150.
  • Vinay, S., Manideep, D. S., Yeshwanth, P., & Saishivaram, C. H. (2022, May 30–June 1). Simulating flood exposure due to meteorological extremes in GWMC [Conference presentation]. International Conference on River Corridor Research and Management, Singapur.
  • Waseem, M., Ahmad, S., Ahmad, I., Wahab, H., & Leta, M. K. (2023). Urban flood risk assessment using AHP and geospatial techniques in swat Pakistan. SN Applied Sciences, 5(8), Article 215. https://doi.org/10.1007/s42452-023-05445-1
  • Yılmaz, E. & Çiçek, İ. (2016). Thornthwaite climate classification of Turkey Türkiye Thornthwaite iklim sınıflandırması. Journal of Human Sciences, 13(3), 3973–3994.
  • Yılmaz, E. & Çiçek, İ. (2018). Türkiye’nin detaylandırılmış Köppen-Geiger iklim bölgeleri Detailed Köppen-Geiger Climate Regions of Turkey. International Journal of Human Sciences, 15(1), 2458–9489.
  • Yurteri, C. (2024). Coğrafi Bilgi Sistemleri (Cbs) Ortamında Analitik Hiyerarşi Yöntemi (AHY) Yöntemi Kullanılarak Taşkın Risk Analizi: Karabük İli Örneği. Mühendislik Bilimleri ve Tasarım Dergisi, 12(2), 298–318. https://doi.org/10.21923/jesd.1438999
  • Yüksek, Ö., Kankal, M. & Üçüncü, O. (2013) Assessment of big floods in the Eastern Black Sea Basin of Turkey. Environmental Monitoring and Assessment, 185, 797–814. https://doi.org/10.1007/s10661-012-2592-2
  • Yükseler, U., & Dursun, Ö. F. (2024). Shannon Entropi (SE) ve AHP Metoduyla Artvin (Arhavi) Kapisre Taşkınının İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 611–631. https://doi.org/10.53433/yyufbed.1395065
  • Zhang, M., Zhai, G., He, T., & Wu, C. (2023). A growing global threat: Long-term trends show cropland exposure to flooding on the rise. Science of The Total Environment, 899, Article 165675. https://doi.org/10.1016/j.scitotenv.2023.165675
  • Zhran, M., Ghanem, K., Tariq, A., Alshehri, F., Jin, S., Das, J., Pande, C. B., Pramanik, M., Ben Hasher, F. F., & Mousa, A. (2024). Exploring a GIS-based analytic hierarchy process for spatial flood risk assessment in Egypt: A case study of the Damietta branch. Environmental Sciences Europe, 36(1), Article 184. https://doi.org/10.1186/s12302-024-01001-9

Flood Exposure Analysis of the Yomra River Basin

Year 2026, Volume: 12 Issue: 1, 111 - 129, 25.01.2026
https://doi.org/10.21324/dacd.1725047

Abstract

Due to global climate change and population growth, the number and frequency of flood events occurring on Earth are increasing. Türkiye is one of the countries where flood events occur frequently due to its topographical structure and climatic characteristics. The increase in the number of floods has led to a rise in studies on flood-related susceptibility, risks, and exposure. In particular, technological developments have led to the widespread use of geographic information systems, increasing variety of methods and data sources that can be used for these studies. In this study, a flood exposure analysis was conducted for the Yomra River basin, located within the borders of Trabzon province in the Eastern Black Sea Basin, one of the basins in Türkiye where floods occur most frequently. For the exposure analysis, the flood hazard status of the basin was first determined using the Analytical Hierarchy Process (AHP) based on data such as proximity to the river, elevation, slope, geology, aspect, land use, soil, and Topographic Wetness Index (TWI) specific to the basin. Following the determination of the flood hazard status, population distribution data for the basin was obtained using the dasimetric method, incorporating 2024 population data for the neighborhoods and data on structures and independent units within the basin. The study found that out of the 9,680 people residing in the basin, 1,217 (12.6%) were at very high risk, 214 (2.2%) were classified as high, 1,769 (18.3%) as medium, 5,585 (57.7%) as low, and 895 (9.2%) as very low flood risk.

References

  • Ahmed, R., Jarin, N. Z., & Rahman, O. (2024). Spatiotemporal Dynamics of Flood Exposure in Bangladesh: A GIS and Remote Sensing Based Approach. In B. Biswas & B. B. Ghute (Eds.), Flood Risk Management Assessment and Strategy (pp. 1–22). Springer Nature.
  • Anadolu Ajansı. (2019). 30 Temmuz 2025’te https://www.aa.com.tr/tr/turkiye/trabzonda-saganak-nedeniyle-yol-coktu/1511275 adresinden alındı.
  • Anadolu Ajansı. (2024). 30 Temmuz 2025’te https://www.aa.com.tr/tr/gundem/trabzonda-saganak-etkili-oldu/3336086 adresinden alındı.
  • Avci, V. (2025). Doğu Karadeniz Bölümü’nde Meydana Gelen Sel ve Taşkınların Analizi (1955–2022). Özgür Yayınları.
  • Avcı, V., & Kıranşan, K. (2022). Analitik hiyerarşi süreci (AHS) ve coğrafi bilgi sistemleri (CBS) ile Bingöl Merkez İlçe’nin taşkın duyarlılık analizi. In B. Dülek (Ed.), Sosyal, beşeri ve idari bilimler alanında uluslararası araştırmalar VII (ss. 45–69). Eğitim Yayınevi.
  • Avci, V., & Ünsal, Ö. (2023). A morphometric approach to Bozkurt (Kastamonu-Türkiye) flood. Doğal Afetler ve Çevre Dergisi, 9(2), 216–239. https://doi.org/10.21324/dacd.1210797
  • Baalousha, H. M., Younes, A., Yassin, M. A., & Fahs, M. (2023). Comparison of the fuzzy analytic hierarchy process (F-AHP) and fuzzy logic for flood exposure risk assessment in arid regions. Hydrology, 10(7), Article 136. https://doi.org/10.3390/hydrology10070136.
  • Balk, D. L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., & Nelson, A. (2006). Determining global population distribution: methods, applications and data. Advances in parasitology, 62, 119–156. https://doi.org/10.1016/S0065-308X(05)62004-0
  • Bayazıt, Y. (2021). Bilecik İlindeki Şehirleşmenin Taşkın Riski Üzerindeki Etkilerinin Araştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(1), 217–227. https://doi.org/10.35193/bseufbd.877539
  • Bernhofen, M. V., Trigg, M. A., Sleigh, P. A., Sampson, C. C., & Smith, A. M. (2021). Global flood exposure from different sized rivers. Natural Hazards and Earth System Sciences, 21(9), 2829–2847. https://doi.org/10.5194/nhess-21-2829-2021
  • Bertsch, R., Glenis, V., & Kilsby, C. (2022). Building level flood exposure analysis using a hydrodynamic model. Environmental Modelling & Software, 156, Article 105490. https://doi.org/10.1016/j.envsoft.2022.105490
  • Bonacci, O., Ljubenkov, I., Roje-Bonacci, T., (2006). Karst flash floods: an example from the Dinaric karst (Croatia). Natural Hazards and Earth System Sciences, 6, 195–203. https://doi.org/10.5194/nhess-6-195-2006
  • Boultif, M., Kheloufi, B., Hachemi, A. & Mimeche, L. (2024). GIS-Based Multi-criteria Decision-Making Techniques and Analytical Hierarchical Process for Flash Flood Risk Assessment Due to a Possible Dam Break in Urban Arid Environment: Case Study of Biskra City, Southern Algeria. Journal of the Indian Society of Remote Sensing, 52, 1085–1097.
  • Coşkun, M., & Ortaç, G. (2022). Filyos Çayı Havzası'nın (Karabük Merkez İlçe-Gökçebey) Çok Ölçütlü Karar Analizi Yöntemiyle Taşkın Risklerinin Belirlenmesi. Doğu Coğrafya Dergisi, 27(47), 15–27.
  • Das, Sumit. (2018). Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India, Arabian Journal of Geosciences, 11, Article 576. https://doi.org/10.1007/s12524-024-01860-y
  • Dou, X., Song, J., Wang, L., Tang, B., Xu, S., Kong, F. & Jiyang, X. (2017). Flood risk assessment and mapping based on a modified multiparameter flood hazard index model in the Guanzhong Urban Area, China. Stochastic Environmental Research and Risk Assessment, 32, 1131–1146. https://doi.org/10.1007/s00477-017-1429-5
  • De Moel, H., Aerts, J. C., & Koomen, E. (2011). Development of flood exposure in the Netherlands during the 20th and 21st century. Global Environmental Change, 21(2), 620–627. https://doi.org/10.1016/j.gloenvcha.2010.12.005
  • Dey, H., Shao, W., Haque, M. M., & VanDyke, M. (2024). Enhancing Flood Risk Analysis in Harris County: Integrating Flood Susceptibility and Social Vulnerability Mapping. Journal of Geovisualization and Spatial Analysis, 8(1), Article 19. https://doi.org/10.1007/s41651-024-00181-5
  • Dhieb, M. (2022). A Bivariate Dasymetric Population Map of Saudi Arabia. Current Urban Studies, 10(4), 673–696.
  • Duman, N., & İrcan, M. R. (2022). Coğrafi Bilgi Sistemleri tabanlı Çankırı Merkez ilçesinin taşkın duyarlılık analizi. Jeomorfolojik Araştırmalar Dergisi, 9, 50–66. https://doi.org/10.46453/jader.1165963
  • Dursun, Y. (2022). Coğrafi bilgi sistemi ile taşkın risk analizi: Osmaneli/Bilecik örneği [Yüksek lisans tezi, Konya Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Ertan, A., Özelkan, E., & Karaman, M. (2021). Analitik Hiyerarşi Süreci Kullanılarak Coğrafi Bilgi Sistemleri Ortamında Sel ve Taşkın Alanlarının Belirlenmesi: Çanakkale Karamenderes Havzası Örneği. Journal of Research in Atmospheric Science, 3(2), 1–9.
  • Gerger, R., & Tanrıverdi, M. (2018, 17–19 Ekim). Coğrafi bilgi sistemleri (CBS) tabanlı çok ölçütlü karar analizi ile Şanlıurfa il merkezinin taşkın alanlarının belirlenmesi [Konferans bildirisi]. 7. Uzaktan Algılama & CBS Sempozyumu (UZAL-CBS 2018), Anadolu Üniversitesi, Eskişehir.
  • Ghosh, A., & Kar, S. K. (2018). Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Natural Hazards, 94(1), 349–368. https://doi.org/10.1007/s11069-018-3392-y
  • Gökçeoğlu, C., Sönmez, H., Nefiseoğlu, H. A., Duman, T. Y. & Can, T. (2005). The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering Geology, 81, 65–83.
  • Haghizadeh, A., Fathiganji, R., Sohrabi, E., Lotfi, A., & Ghasemi, L. (2025). A framework for flood risk zoning and prioritization combining maximum entropy and game theory. Scientific Reports, 15(1), Article 24153. https://doi.org/10.1038/s41598-025-08220-x
  • Hamidi, A. R., Jing, L., Shahab, M., Azam, K., Atiq Ur Rehman Tariq, M., & Ng, A. W. (2022). Flood exposure and social vulnerability analysis in rural areas of developing countries: An empirical study of Charsadda District, Pakistan. Water, 14(7), Article 1176. https://doi.org/10.3390/w14071176
  • Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., & Dlala, M. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12(21), Article 653. https://doi.org/10.1007/s12517-019-4754-9
  • He, B., Gilligan, J. M., & Camp, J. V. (2024). Incorporating spatial autocorrelation in dasymetric mapping: A hierarchical Poisson spatial disaggregation regression model. Applied Geography, 169, Article 103333. https://doi.org/10.1016/j.apgeog.2024.103333
  • Hosseini, F. S., Choubin, B., Mosavi, A., Nabipour, N., Shamshirband, S., Darabi, H., & Haghighi, A. T. (2020). Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Science of the Total Environment, 711, Article 135161. https://doi.org/10.1016/j.scitotenv.2019.135161
  • Işık, F., Bahadır, M., Zeybek, H. İ., & Çağlak, S. (2020). Karadere Çayı Taşkını (Araklı-Trabzon). Mavi Atlas, 8(2), 526–547.
  • Islam, A., Ghosh, S., & Sarkar, M. (2024). Assessing livelihood vulnerability of rural communities in the wake of recurrent tropical flood hazards in India. Natural Hazards, 121, 677–704. https://doi.org/10.1007/s11069-024-06847-z
  • Janizadeh, S., Pal, S. C., Saha, A., Chowdhuri, I., Ahmadi, K., Mirzaei, S., Mosavi, A. H., & Tiefenbacher, J. P. (2021). Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. Journal of Environmental Management, 298, Article 113551. https://doi.org/10.1016/j.jenvman.2021.113551
  • Karakoca, E., & Ünver, A. (2024). Analitik hiyerarşi süreci ve coğrafi bilgi sistemleri kullanarak Eşen Çayı Havzası’nda taşkın riski değerlendirmesi ve haritalandırılması. Geomatik, 10(1), 127–143. https://doi.org/10.29128/geomatik.1542251
  • Karakuş, C. B., & Ceylan, Ş. (2022). Coğrafi Bilgi Sistemi Tabanlı Analitik Hiyerarşi Süreci Kullanılarak Taşkın Tehlike Haritalaması. Mühendislik Bilimleri ve Tasarım Dergisi, 10(4), 1155–1173. https://doi.org/10.21923/jesd.1049464
  • Kaya, Ç. M. (2022). Taşkın duyarlılık haritalarının oluşturulmasında kullanılan yöntemler. Türk Uzaktan Algılama ve CBS Dergisi, 3(2), 191–209. https://doi.org/10.48123/rsgis.1129606
  • Köy Hizmetleri Genel Müdürlüğü. (1987). Türkiye Büyük Toprak Grupları Haritası. Köy Hizmetleri Genel Müdürlüğü, Ankara.
  • Köse, M., Tate, N., & Tansey, K. (2017). İkili eşleme ve hacimsel nüfus tahmini teknikleri kullanarak nüfus dağılışının haritalanması. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 19(2), 339–363.
  • Kuruüzüm, A., & Atsan, N. (2001). Analitik Hiyerarşi Yöntemi ve İşletmecilik Alanındaki Uygulamaları. Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 1, 83–105.
  • Kuşcu, İ., & Özdemir, H. (2023). Taşkın du¬yarlılık analizinde kullanılan parametreler üzerine bir değerlendirme. Türk Coğrafya Dergisi (84), 67–83. https://doi.org/10.17211/tcd.1345962
  • Maden Tetkik ve Arama Genel Müdürlüğü. (2025). 1/25.000 Ölçekli G43b1, G43b2, G43b3, G43b4 Jeoloji Haritaları. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Meteoroloji Genel Müdürlüğü. (2024). Trabzon İklim Sınıflandrıması. 20 Temmuz 2025’te https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=TRABZON adresinden alındı.
  • Mohanty, M. P., & Simonovic, S. P. (2021). Understanding dynamics of population flood exposure in Canada with multiple high-resolution population datasets. Science of The Total Environment, 759, Article 143559. https://doi.org/10.1016/j.scitotenv.2020.143559
  • Nyarko, B. K. (2002). Application of a rational model in GIS for flood risk assessment in Accra, Ghana. Journal of Spatial Hydrology, 2, 1–14.
  • Ortakavak, Z., Çabuk, S. N., Cetin, M., Senyel Kurkcuoglu, M. A., & Cabuk, A. (2020). Determination of the nighttime light imagery for urban city population using DMSP-OLS methods in Istanbul. Environmental monitoring and assessment, 192(12), Article 790. https://doi.org/10.1007/s10661-020-08735-y
  • Özelkan, E., & Eren, E. (2024). Analitik Hiyerarşi Süreci Yöntemi Kullanarak Çanakkale-Kepez Beldesi Sel ve Taşkın Risk Analizi. Bilim-Teknoloji-Yenilik Ekosistemi Dergisi, 5(2), 123–137.
  • Özşahin, E., & Kaymaz, Ç. K. (2013). Taşkın Riskinin Değerlendirmesine Bir Örnek: Amik Ovası Taşkınları. Electronic Turkish Studies, 8(8), 2021–2039. http://dx.doi.org/10.7827/TurkishStudies.4785
  • Pala, O. N., Daloglu Cetinkaya, I., & Yazar, M. (2025). Urban Flood Exposure and Vulnerability: Insights From Pendik District of Istanbul. Journal of Flood Risk Management, 18(1), Article e70000. https://doi.org/10.1111/jfr3.70000
  • Pambuku, A., Elia, M., Gardelli, A., Giannico, V., Sanesi, G., Bergantino, A. S., Intini, M., & Lafortezza, R. (2024). Assessing urbanization dynamics using a pixel-based nighttime light indicator. Ecological Indicators, 166, Article 112486. https://doi.org/10.1016/j.ecolind.2024.112486
  • Pant, R., Thacker, S., Hall, J. W., Alderson, D., & Barr, S. (2018). Critical infrastructure impact assessment due to flood exposure. Journal of Flood Risk Management, 11(1), 22–33. https://doi.org/10.1111/jfr3.12288
  • Papilloud, T., Röthlisberger, V., Loreti, S., & Keiler, M. (2020). Flood exposure analysis of road infrastructure–Comparison of different methods at national level. International journal of disaster risk reduction, 47, Article 101548. https://doi.org/10.1016/j.ijdrr.2020.101548
  • Park, J. (2020, September 15–18). Estimating hourly population distribution patterns at high spatiotemporal resolution in urban areas using geo-tagged tweets and dasymetric mapping [Conference presentation]. 11th International Conference on Geographic Information Science, Poznań, Poland.
  • Pathan, A. I., Girish Agnihotri, P., Said, S., & Patel, D. (2022). AHP and TOPSIS based flood risk assessment-a case study of the Navsari City, Gujarat, India. Environmental Monitoring and Assessment, 194(7), Article 509. https://doi.org/10.1007/s10661-022-10111-x
  • Peng, Z., Wang, R., Liu, L., & Wu, H. (2020). Fine-scale dasymetric population mapping with mobile phone and building use data based on grid voronoi method. ISPRS International Journal of Geo-Information, 9(6), Article 344. https://doi.org/10.3390/ijgi9060344
  • Perazzini, S., Gnecco, G., & Pammolli, F. (2024). A catastrophe model approach for flood risk assessment of Italian municipalities. Annals of Operations Research. https://doi.org/10.1007/s10479-024-06060-y
  • Qiang, Y. (2019). Flood exposure of critical infrastructures in the United States. International Journal of Disaster Risk Reduction, 39, Article 101240. https://doi.org/10.1016/j.ijdrr.2019.101240
  • Ramkar, P., & Yadav, S. M. (2021). Flood risk index in data-scarce river basins using the AHP and GIS approach. Natural Hazards, 109(1), 1119–1140. https://doi.org/10.1007/s11069-021-04871-x
  • Rentschler, J., Salhab, M., & Jafino, B. A. (2022). Flood exposure and poverty in 188 countries. Nature communications, 13(1), Article 3527. https://doi.org/10.1038/s41467-022-30727-4
  • Saat, M. (2000). Çok Amaçlı Karar Vermede Bir Yaklaşım: Analitik Hiyerarşi Yöntemi. Gazi Üniversitesi İktisadi ve İdari Bilimler Dergisi. 2,149-162.
  • Saaty, T. L. (1980). The Analytic Hierarchy Process, McGraw-Hill Comp.
  • Saha, G., Kabir, M. N., Islam, M. S., Khandaker, A., & Chowdhury, P. (2024). Flash flood potential risk zonation mapping using GIS-based spatial multi-index model: a case study of Sunamganj District, Bangladesh. Arabian Journal of Geosciences, 17(3), Article 100. https://doi.org/10.1007/s12517-024-11907-6
  • Samanta, S., Koloa, C., Kumar Pal, D., & Palsamanta, B. (2016). Flood risk analysis in lower part of Markham river based on multi-criteria decision approach (MCDA). Hydrology, 3(3), Article 29. https://doi.org/10.3390/hydrology3030029
  • Smith, A., Bates, P. D., Wing, O., Sampson, C., Quinn, N., & Neal, J. (2019). New estimates of flood exposure in developing countries using high-resolution population data. Nature communications, 10(1), Article 1814. https://doi.org/10.1038/s41467-019-09282-y
  • Stefanidis, S., Alexandridis, V., & Theodoridou, T. (2022). Flood exposure of residential areas and infrastructure in Greece. Hydrology, 9(8), Article 145. https://doi.org/10.3390/hydrology9080145
  • Stefanidis, S., & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural hazards, 68(2), 569–585. https://doi.org/10.1007/s11069-013-0639-5
  • Sugianto, S., Deli, A., Miswar, E., Rusdi, M., & Irham, M. (2022). The effect of land use and land cover changes on flood occurrence in Teunom Watershed, Aceh Jaya. Land, 11(8), Article 1271. https://doi.org/10.3390/land11081271
  • Sun, P., Entress, R., Tyler, J., Sadiq, A. A., & Noonan, D. (2023). Critical public infrastructure underwater: the flood hazard profile of Florida hospitals. Natural Hazards, 117(1), 473–489. https://doi.org/10.1007/s11069-023-05869-3
  • Swain, D. L., Wing, O. E., Bates, P. D., Done, J. M., Johnson, K. A., & Cameron, D. R. (2020). Increased flood exposure due to climate change and population growth in the United States. Earth's Future, 8(11), Article e2020EF001778. https://doi.org/10.1029/2020EF001778
  • Şanlı, B., Can, M., & Aslan, S. T. (2025). Analitik Hiyerarşi Yöntemi ile Taşkın Riskinin Tespiti: Bursa İli İnegöl İlçesi Kalburt Deresi Örneği. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 39(1), 167–186. https://doi.org/10.20479/bursauludagziraat.1625180
  • Tanoue, M., Hirabayashi, Y., & Ikeuchi, H. (2016). Global-scale river flood vulnerability in the last 50 years, Scientific Reports, 6, Article 36021. https://doi.org/10.1038/srep36021
  • Taherizadeh, M., Niknam, A., Nguyen-Huy, T., Mezősi, G., & Sarli, R. (2023). Flash flood-risk areas zoning using integration of decision-making trial and evaluation laboratory, GIS-based analytic network process and satellite-derived information. Natural Hazards, 118(3), 2309–2335. https://doi.org/10.1007/s11069-023-06089-5
  • Taş, M. A., & Yanık, M. E. (2022). Analitik Hiyerarşi Süreci (Ahs) Metodu İle Behzat Deresi (Tokat) Havzası Taşkın Risk Analizi. Erzincan Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 15(2), 185–199. https://doi.org/10.46790/erzisosbil.1221464
  • Tate, E., Rahman, M. A., Emrich, C. T., & Sampson, C. C. (2021). Flood exposure and social vulnerability in the United States. Natural Hazards, 106(1), 435–457. https://doi.org/10.1007/s11069-020-04470-2
  • T.C. Tarım ve Orman Bakanlığı. (2020). Doğu Karadeniz Havzası Taşkın Yönetim Planı. 15 Haziran 2025’te https://www.tarimorman.gov.tr/SYGM/Belgeler/Ta%C5%9Fk%C4%B1n%20Y%C3%B6netim%20Planlar%C4%B1%2026.12.2022/DOGU_KARADENIZ_HAVZASI_Taskin_Yonetim_Plani.pdf adresinden alındı.
  • Tehrany, M. S., Jones, S., Shabani, F., Martínez-Álvarez, F., & Tien Bui, D. (2019). A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoretical and Applied Climatology, 137(1), 637–653. https://doi.org/10.1007/s00704-018- 2628-9
  • Thannoun, R. G., & Ismaeel, O. A. (2023, December 13–15). Flood risk vulnerability detection based on the developing topographic wetness index tool in geographic information system. [Conference presentation]. 3rd Scientific Conference of Iraqi Desert Geology, Ramadi, Iraq.
  • Thomas, B. E. O., Roger, J., Gunnell, Y., & Ashraf, S. (2023). A method for evaluating population and infrastructure exposed to natural hazards: tests and results for two recent Tonga tsunamis. Geoenvironmental disasters, 10(1), Article 4. https://doi.org/10.1186/s40677-023-00235-8
  • Ullah, N., Tariq, A., Qasim, S., Panezai, S., Uddin, M. G., Abdullah-Al-Wadud, M., & Ullah, S. (2024). Geospatial analysis and AHP for flood risk mapping in Quetta, Pakistan: a tool for disaster management and mitigation. Applied Water Science, 14(11), Article 236. https://doi.org/10.1007/s13201-024-02293-1
  • United Nations Office for Disaster Risk Reduction. (2017). The Sendai Framework Terminology on Disaster Risk Reduction. "Exposure". 21 Haziran 2025’te https://www.undrr.org/terminology/exposure adresinden alındı.
  • United Nations Office for Disaster Risk Reduction. (2020). Human Cost of Disasters An Overwiev of the Last 20 Years. 10 Eylül 2025’te https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019 adresinden alındı.
  • Ünal, A., Çamcı, K. G., & Tonyaloğlu, E. E. (2022). Çok kriterli karar analizi ile doğal afetlerde haritalama: Aydın ili sel-taşkın riski örneği. Ulisa: Uluslararası Çalışmalar Dergisi, 6(2), 136–150.
  • Vinay, S., Manideep, D. S., Yeshwanth, P., & Saishivaram, C. H. (2022, May 30–June 1). Simulating flood exposure due to meteorological extremes in GWMC [Conference presentation]. International Conference on River Corridor Research and Management, Singapur.
  • Waseem, M., Ahmad, S., Ahmad, I., Wahab, H., & Leta, M. K. (2023). Urban flood risk assessment using AHP and geospatial techniques in swat Pakistan. SN Applied Sciences, 5(8), Article 215. https://doi.org/10.1007/s42452-023-05445-1
  • Yılmaz, E. & Çiçek, İ. (2016). Thornthwaite climate classification of Turkey Türkiye Thornthwaite iklim sınıflandırması. Journal of Human Sciences, 13(3), 3973–3994.
  • Yılmaz, E. & Çiçek, İ. (2018). Türkiye’nin detaylandırılmış Köppen-Geiger iklim bölgeleri Detailed Köppen-Geiger Climate Regions of Turkey. International Journal of Human Sciences, 15(1), 2458–9489.
  • Yurteri, C. (2024). Coğrafi Bilgi Sistemleri (Cbs) Ortamında Analitik Hiyerarşi Yöntemi (AHY) Yöntemi Kullanılarak Taşkın Risk Analizi: Karabük İli Örneği. Mühendislik Bilimleri ve Tasarım Dergisi, 12(2), 298–318. https://doi.org/10.21923/jesd.1438999
  • Yüksek, Ö., Kankal, M. & Üçüncü, O. (2013) Assessment of big floods in the Eastern Black Sea Basin of Turkey. Environmental Monitoring and Assessment, 185, 797–814. https://doi.org/10.1007/s10661-012-2592-2
  • Yükseler, U., & Dursun, Ö. F. (2024). Shannon Entropi (SE) ve AHP Metoduyla Artvin (Arhavi) Kapisre Taşkınının İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 611–631. https://doi.org/10.53433/yyufbed.1395065
  • Zhang, M., Zhai, G., He, T., & Wu, C. (2023). A growing global threat: Long-term trends show cropland exposure to flooding on the rise. Science of The Total Environment, 899, Article 165675. https://doi.org/10.1016/j.scitotenv.2023.165675
  • Zhran, M., Ghanem, K., Tariq, A., Alshehri, F., Jin, S., Das, J., Pande, C. B., Pramanik, M., Ben Hasher, F. F., & Mousa, A. (2024). Exploring a GIS-based analytic hierarchy process for spatial flood risk assessment in Egypt: A case study of the Damietta branch. Environmental Sciences Europe, 36(1), Article 184. https://doi.org/10.1186/s12302-024-01001-9
There are 90 citations in total.

Details

Primary Language Turkish
Subjects Geographic Information Systems, Natural Hazards
Journal Section Research Article
Authors

Okan Ertoğral 0000-0002-8165-6954

İhsan Çiçek 0000-0002-9000-2805

Submission Date June 23, 2025
Acceptance Date November 8, 2025
Publication Date January 25, 2026
Published in Issue Year 2026 Volume: 12 Issue: 1

Cite

APA Ertoğral, O., & Çiçek, İ. (2026). Yomra Deresi Havzasının Taşkın Maruziyet Analizi. Doğal Afetler Ve Çevre Dergisi, 12(1), 111-129. https://doi.org/10.21324/dacd.1725047
AMA Ertoğral O, Çiçek İ. Yomra Deresi Havzasının Taşkın Maruziyet Analizi. J Nat Haz Environ. January 2026;12(1):111-129. doi:10.21324/dacd.1725047
Chicago Ertoğral, Okan, and İhsan Çiçek. “Yomra Deresi Havzasının Taşkın Maruziyet Analizi”. Doğal Afetler Ve Çevre Dergisi 12, no. 1 (January 2026): 111-29. https://doi.org/10.21324/dacd.1725047.
EndNote Ertoğral O, Çiçek İ (January 1, 2026) Yomra Deresi Havzasının Taşkın Maruziyet Analizi. Doğal Afetler ve Çevre Dergisi 12 1 111–129.
IEEE O. Ertoğral and İ. Çiçek, “Yomra Deresi Havzasının Taşkın Maruziyet Analizi”, J Nat Haz Environ, vol. 12, no. 1, pp. 111–129, 2026, doi: 10.21324/dacd.1725047.
ISNAD Ertoğral, Okan - Çiçek, İhsan. “Yomra Deresi Havzasının Taşkın Maruziyet Analizi”. Doğal Afetler ve Çevre Dergisi 12/1 (January2026), 111-129. https://doi.org/10.21324/dacd.1725047.
JAMA Ertoğral O, Çiçek İ. Yomra Deresi Havzasının Taşkın Maruziyet Analizi. J Nat Haz Environ. 2026;12:111–129.
MLA Ertoğral, Okan and İhsan Çiçek. “Yomra Deresi Havzasının Taşkın Maruziyet Analizi”. Doğal Afetler Ve Çevre Dergisi, vol. 12, no. 1, 2026, pp. 111-29, doi:10.21324/dacd.1725047.
Vancouver Ertoğral O, Çiçek İ. Yomra Deresi Havzasının Taşkın Maruziyet Analizi. J Nat Haz Environ. 2026;12(1):111-29.