Review
BibTex RIS Cite

Dünyadaki Son Gelişmeler Çerçevesinde Yüksek Hızlı Demiryolu Tünel Tasarımı ve Türkiye’deki Durum

Year 2022, , 13 - 29, 31.01.2022
https://doi.org/10.47072/demiryolu.1018008

Abstract

Yüksek standartlı demiryolları, kat ettiği mesafeler ve içerdiği karmaşık mühendislik yapıları açısından oldukça zorlu imalatlardır. Gerek imalat gerekse işletmecilik faaliyetleri sırasında maliyet etkin olması istenir. Güzergâh çalışmalarından mühendislik yapılarının tasarımına kadar bu durumu etkileyen birçok parametre vardır. Bu çalışmada, yüksek hızlı demiryollarında tünel tasarımı konusuna odaklanmaktadır. Bu amaçla öncelikle yüksek hızlı demiryolu tünel tasarımında kullanılan ana hat ve tünel güvenliği konuları uluslararası standartlar çerçevesinde irdelenmiş, bu konuda dünyada yapılan son çalışmalar derlenmiştir. Ardından Türkiye’de geçmişi yaklaşık 20 yılı bulan yüksek hızlı demiryolu tünel imalat tecrübeleri aktarılmıştır. İlk tasarımından bu yana neredeyse hiç değişmeyen tünel yapısında, işletme sırasında oluşan sorunlar çerçevesinde yapısal ve geometrik iyileştirmeler gerektiği sonucuna varılarak bu kapsamda öneriler sunulmuştur.

Thanks

Yazar bu çalışma kapsamında TCDD yetkili personeline göstermiş oldukları yardım ve desteklerinden dolayı teşekkür eder.

References

  • [1] Concerning the technical specification of interoperability relating to ‘safety in railway tunnels’ in the trans-European conventional and high-speed rail system, TSI, 2008/163/EC, 2008.
  • [2] D. Diamantidis, F. Zuccarellib, A. Westha, “Safety of long railway tunnels,” Reliability Engineering and System Safety, 67, 135-145, 2000.
  • [3] E. Poşluk, M. Korkanç, “Yüksek Hızlı Demiryolu Tünellerinde Güvenlik Tüneli Modellemeleri: Ankara-İstanbul Hızlı Tren Projesi 26 Numaralı Tünel Örneği,” Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6/2, 642-652, 2017.
  • [4] Safety in railway tunnels, UIC Code 779-9, 2003.
  • [5] Railway applications. The specification and demonstration of reliability, availability, maintainability and safety (RAMS), BS EN 50126, England, 1999.
  • [6] J.A. Schetz, “Aerodynamics of high-speed trains,” Annu. Rev. Fluid Mech. 33 (1) 371–414, 2001.
  • [7] C.J. Baker, “A review of train aerodynamics Part 1–Fundamentals,” Aeronaut. J. 118 (1201) 201–228, 2014.
  • [8] J. Niu, Y. Sui, Q. Yu, X. Cao, Y. Yuan, “Aerodynamics of railway train/tunnel system: A review of recent research,” Energy and Built Environment, 1(4), 351-375, 2020.
  • [9] P. Xue, S. You, J. Chao, T. Ye, “Numerical investigation of unsteady airflow in sub- way influenced by piston effect based on dynamic mesh,” Tunnelling and Underground Space Technology, 40 174–181, 2014.
  • [10] T. Moreno, N. Pérez, C. Reche, V. Martins, E. de Miguel, M. Capdevila, S. Centelles, M.C. Minguillón, F. Amato, A. Alastuey, X. Querol, W. Gibbons, “Subway platform air quality: assessing the influences of tunnel ventilation, train piston effect and station design,” Atmos. Environ., 92 461–468, 2014.
  • [11] M. Juraeva, J.H. Lee, D.J. Song, “A computational analysis of the train-wind to identify the best position for the air-curtain installation,” J. Wind Eng. Ind. Aerodyn., 99 (5) 554–559, 2011.
  • [12] M. Fu, P. Li, X.F. Liang, “Numerical analysis of the slipstream development around a high-speed train in a double-track tunnel,” PLoS ONE, 12 (3) e0175044, 2017.
  • [13] A. Khayrullina, B. Blocken, W. Janssen, J. Straathof, “CFD simulation of train aero- dynamics: train-induced wind conditions at an underground railroad passenger platform,” J. Wind Eng. Ind. Aerodyn. 139 100–110, 2015.
  • [14] M. Rabani, A.K. Faghih, “Numerical analysis of air flow around a passenger train entering the tunnel,” Tunnelling and Underground Space Technology, 45 203–213, 2015.
  • [15] Y.C. Ku, J.H. Rho, S.H. Yun, M.H. Kwak, K.H. Kim, H.B. Kwon, D.H. Lee, “Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave,” Struct. Multidiscipl. Optim. 42 (6), 965–976, 2010.
  • [16] J.K. Choi, K.H. Kim, “Effects of nose shape and tunnel cross-sectional area on aero- dynamic drag of train traveling in tunnels,” Tunnelling and Underground Space Technology, 41, 62–73, 2014.
  • [17] M. Suzuki, “Unsteady aerodynamic force acting on high speed trains in tunnel,” Q. Rep. RTRI 42 (2) 89–93, 2001.
  • [18] T. Miyachi, T. Fukuda, S. Saito, “Model experiment and analysis of pressure waves emitted from portals of a tunnel with a branch,” J. Sound Vib. 333 (23), 6156–6169, 2014.
  • [19] A. Baron, M. Mossi, S. Sibilla, “The alleviation of the aerodynamic drag and wave effects of high-speed trains in very long tunnels,” J. Wind Eng. Ind. Aerodyn., 89 (5), 365–401, 2001.
  • [20] F. Liu, S. Yao, J. Zhang, Y.B. Zhang, “Effect of increased linings on micro-pressure waves in a high-speed railway tunnel,” Tunnelling and Underground Space Technology, 52, 62–70, 2016.
  • [21] K. Kikuchi, M. Iida, T. Fukuda, “Optimization of train nose shape for reducing mi- cro-pressure wave radiated from tunnel exit,” J. Low Frequency Noi. Vibrat. Act. Control, 30 (1), 1–19, 2011.
  • [22] M. Iida, T. Matsumura, K. Nakatani, T. Fukuda, T. Maeda, “Effective nose shape for reducing tunnel sonic boom,” QR of RTRI, 38 (4), 206–211, 1997.
  • [23] L. Zhang, M.Z. Yang, X.F. Liang, J. Zhang, “Oblique tunnel portal effects on train and tunnel aerodynamics based on moving model tests,” J. Wind Eng. Ind. Aerodyn., 167, 128–139, 2017.
  • [24] M.S. Howe, “The genetically optimized tunnel-entrance hood,” J. Fluids Struct., 23 (8), 1231–1250, 2007.
  • [25] D. Heine, K. Ehrenfried, G. Heine, S. Huntgeburth, “Experimental and theoretical study of the pressure wave generation in railway tunnels with vented tunnel portals,” J. Wind Eng. Ind. Aerodyn., 176, 290–300, 2018.
  • [26] X. Xiang, L. Xue, B. Wang, W. Zou, “Mechanism and capability of ventilation open- ings for alleviating micro-pressure waves emitted from high-speed railway tunnels,” Build. Environ., 132 245–254, 2018.
  • [27] W. Li, T. Liu, P. Martinez-Vazquez, Z. Chen, Z. Guo, M. Li, H. Liu, “Aerodynamic effects of a high-speed train travelling through adjoining & separated tunnels,” Tunnelling and Underground Space Technology, 113, 103-973, 2021.
  • [28] Determination of railway tunnel cross-sectional areas on the basis of aerodynamic considerations, UIC code 779-11, 2005.
  • [29] L.N. Reddi, X. Ming, M.G. Hajra, I.M. Lee, “Permeability reduction of soil filters due to physical clogging,” Journal of Geotechnical and Geoenvironmental Engineering, 126 (3), 236–246, 2000.
  • [30] J.H. Shin, T.I. Addenbrooke, D.M. Potts, “A numerical study of the effect of groundwater movement on long-term tunnel behaviour,” Geotechnique, 52 (6), 391–403, 2002.
  • [31] C. Oggeri, G. Ova, “Quality in tunnelling,” Tunnelling and underground space technology, 19, 34, 2004.
  • [32] H.S. Jung, Y.S. Han, S.R. Chung, Chun, B.S., Lee, Y.J., “Evaluation of advanced drainage treatment for old tunnel drainage system in Korea,” Tunnelling and underground space technology, 38, 476–486, 2013.
  • [33] T. Gamisch, G. Girmscheid, “Future trends in construction and maintenance management of drainage systems in traffic tunnels,” Tunnelling Towards Better Cities, 5-2, 2005.
  • [34] H. Stripple, L. Bostrom, T. Ellison, C. Ewertson, P. Lund, R. Melander, “Evaluation of two different drainage systems for rock tunnels,” Tunnelling and Underground Space Technology, 58, 40–48, 2016.
  • [35] CARS, “Report on the Railway Tunnel Drainage Techniques,” Tech. rep. China Academy of Railway Sciences, Beijing (Chinese), 2016.
  • [36] DIN 4262–1: 2009–10, “Rohre und Formstücke für die unterirdische Entwässerung im Verkehrswege- und Tiefbau – Teil 1: Rohre, Formstücke und deren Verbindungen aus, PVC-U, PP und PE, 2009.
  • [37] C.J. Baker, “A review of train aerodynamics Part 2–Applications,” Aeronaut. J. 118 (1202), 345–382, 2014.
  • [38] J.Y. Kim, K.Y. Kim, “Effects of vent shaft location on the ventilation performance in a subway tunnel,” J. Wind Eng. Ind. Aerodyn. 97 (5), 174–179, 2009.
  • [39] M. Juraeva, J.H. Lee, D.J. Song, “A computational analysis of the train-wind to identify the best position for the air-curtain installation,” J. Wind Eng. Ind. Aerodyn, 99 (5), 554–559 ,2011.
  • [40] Y.D. Huang, L.I. Chan, N.K. Chang, “A numerical analysis of the ventilation perfor- mance for different ventilation strategies in a subway tunnel,” J. Hydrodyn. Ser. B 24 (2), 193–201, 2012.
  • [41] C.R. Chu, S.Y. Chien, C.Y. Wang, T.R. Wu, “Numerical simulation of two trains intersecting in a tunnel,” Tunnelling and Underground Space Technology, 42, 161–174, 2014.
  • [42] B. Diedrichs, S. Krajnovi, M. Berg, “On The Aerodynamics Of Car Body Vibrations Of High-Speed Trains Cruising İnside Tunnels,” Eng. Appl. Comput. Fluid Mech. 2 (1) 51–75, 2008.
  • [43] M.S. Howe, M. Iida, T. Fukuda, T. Maeda, “Theoretical And Experimental İnvestiga- Tion Of The Compression Wave Generated By A Train Entering A Tunnel With A Flared Portal,” J Fluid Mech 425, 111–132, 2000.
  • [44] M.S. Howe, M. Iida, T. Fukuda, “Influence of an unvented tunnel entrance hood on the compression wave generated by a high-speed train,” J. Fluids Struct. 17 (6) 833–853, 2003.
  • [45] M.S. Howe, A. Winslow, M. Iida, T. Fukuda, “Rapid calculation of the compression wave generated by a train entering a tunnel with a vented hood: short hoods,” J. Sound Vib., 311 (1–2), 254–268, 2008.
  • [46] M. Suzuki, Flow-induced vibration of high-speed trains in tunnels, The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, Heidelberg: Springer, 2004.
  • [47] J. Lee, J. Kim, “Approximate optimization of high-speed train nose shape for reduc- ing micropressure wave,” Struct. Multidiscipl. Optim. 35 (1) 79–87, 2008.
  • [48] D. Kolymbas, Tunnelling and Tunnel Mechanics A Rational Approach to Tunnelling, Heidelberg: Springer, 2005.
  • [49] P. Yüksel, "Demiryolları Planlama ve Tasarım Teknik Esasları,” Demiryolları, Limanlar, Havameydanları İnşaatı Genel Müdürlüğü, Ankara: 2007.
  • [50] Yüksel Proje Uluslararası A.Ş., “Ankara- İstanbul Hızlı Tren Projesi Tünel Destek Paftaları,” Yayımlanmamış, 2013.
  • [51] O. Şimşek, E.B. Aygar, A. Ertin, “Ankara- İstanbul Hızlı Tren Projesi Güvenlik Tünelleri Paftaları,” SİAL Yer Bilimleri Ltd. Şti., Yayımlanmamış, 2009.
  • [52] O., Şimşek, E.B. Aygar, “Bursa-Yenişehir Yüksek Hızlı Tren Projesi Drenaj Paftaları,” Fugro-SİAL Yer Bilimleri Ltd. Şti., Yayımlanmamış, 2014.

High Speed Railway Tunnel Design in the Framework of Recent Developments in the World and the Situation in Turkey

Year 2022, , 13 - 29, 31.01.2022
https://doi.org/10.47072/demiryolu.1018008

Abstract

High standard railways are very demanding productions in terms of the distances they cover and the sophisticated engineering structures they contain. It is desired to be cost effective during both manufacturing and management activities. There are many parameters that affect this situation, from route studies to the design of engineering structures. This study focuses on tunnel design in high speed railways. For this purpose, first of all, the main line and tunnel safety issues used in high-speed railway tunnel design were examined within the framework of international standards, and the latest studies in the world on this subject were compiled. Then, the high-speed railway tunnel manufacturing experience in Turkey, which has a history of nearly 20 years, has been conveyed. In the tunnel structure, which has hardly changed since its first design, it was concluded that structural and geometric improvements are needed within the framework of the problems that occurred during operation, and suggestions were presented in this context.

References

  • [1] Concerning the technical specification of interoperability relating to ‘safety in railway tunnels’ in the trans-European conventional and high-speed rail system, TSI, 2008/163/EC, 2008.
  • [2] D. Diamantidis, F. Zuccarellib, A. Westha, “Safety of long railway tunnels,” Reliability Engineering and System Safety, 67, 135-145, 2000.
  • [3] E. Poşluk, M. Korkanç, “Yüksek Hızlı Demiryolu Tünellerinde Güvenlik Tüneli Modellemeleri: Ankara-İstanbul Hızlı Tren Projesi 26 Numaralı Tünel Örneği,” Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6/2, 642-652, 2017.
  • [4] Safety in railway tunnels, UIC Code 779-9, 2003.
  • [5] Railway applications. The specification and demonstration of reliability, availability, maintainability and safety (RAMS), BS EN 50126, England, 1999.
  • [6] J.A. Schetz, “Aerodynamics of high-speed trains,” Annu. Rev. Fluid Mech. 33 (1) 371–414, 2001.
  • [7] C.J. Baker, “A review of train aerodynamics Part 1–Fundamentals,” Aeronaut. J. 118 (1201) 201–228, 2014.
  • [8] J. Niu, Y. Sui, Q. Yu, X. Cao, Y. Yuan, “Aerodynamics of railway train/tunnel system: A review of recent research,” Energy and Built Environment, 1(4), 351-375, 2020.
  • [9] P. Xue, S. You, J. Chao, T. Ye, “Numerical investigation of unsteady airflow in sub- way influenced by piston effect based on dynamic mesh,” Tunnelling and Underground Space Technology, 40 174–181, 2014.
  • [10] T. Moreno, N. Pérez, C. Reche, V. Martins, E. de Miguel, M. Capdevila, S. Centelles, M.C. Minguillón, F. Amato, A. Alastuey, X. Querol, W. Gibbons, “Subway platform air quality: assessing the influences of tunnel ventilation, train piston effect and station design,” Atmos. Environ., 92 461–468, 2014.
  • [11] M. Juraeva, J.H. Lee, D.J. Song, “A computational analysis of the train-wind to identify the best position for the air-curtain installation,” J. Wind Eng. Ind. Aerodyn., 99 (5) 554–559, 2011.
  • [12] M. Fu, P. Li, X.F. Liang, “Numerical analysis of the slipstream development around a high-speed train in a double-track tunnel,” PLoS ONE, 12 (3) e0175044, 2017.
  • [13] A. Khayrullina, B. Blocken, W. Janssen, J. Straathof, “CFD simulation of train aero- dynamics: train-induced wind conditions at an underground railroad passenger platform,” J. Wind Eng. Ind. Aerodyn. 139 100–110, 2015.
  • [14] M. Rabani, A.K. Faghih, “Numerical analysis of air flow around a passenger train entering the tunnel,” Tunnelling and Underground Space Technology, 45 203–213, 2015.
  • [15] Y.C. Ku, J.H. Rho, S.H. Yun, M.H. Kwak, K.H. Kim, H.B. Kwon, D.H. Lee, “Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave,” Struct. Multidiscipl. Optim. 42 (6), 965–976, 2010.
  • [16] J.K. Choi, K.H. Kim, “Effects of nose shape and tunnel cross-sectional area on aero- dynamic drag of train traveling in tunnels,” Tunnelling and Underground Space Technology, 41, 62–73, 2014.
  • [17] M. Suzuki, “Unsteady aerodynamic force acting on high speed trains in tunnel,” Q. Rep. RTRI 42 (2) 89–93, 2001.
  • [18] T. Miyachi, T. Fukuda, S. Saito, “Model experiment and analysis of pressure waves emitted from portals of a tunnel with a branch,” J. Sound Vib. 333 (23), 6156–6169, 2014.
  • [19] A. Baron, M. Mossi, S. Sibilla, “The alleviation of the aerodynamic drag and wave effects of high-speed trains in very long tunnels,” J. Wind Eng. Ind. Aerodyn., 89 (5), 365–401, 2001.
  • [20] F. Liu, S. Yao, J. Zhang, Y.B. Zhang, “Effect of increased linings on micro-pressure waves in a high-speed railway tunnel,” Tunnelling and Underground Space Technology, 52, 62–70, 2016.
  • [21] K. Kikuchi, M. Iida, T. Fukuda, “Optimization of train nose shape for reducing mi- cro-pressure wave radiated from tunnel exit,” J. Low Frequency Noi. Vibrat. Act. Control, 30 (1), 1–19, 2011.
  • [22] M. Iida, T. Matsumura, K. Nakatani, T. Fukuda, T. Maeda, “Effective nose shape for reducing tunnel sonic boom,” QR of RTRI, 38 (4), 206–211, 1997.
  • [23] L. Zhang, M.Z. Yang, X.F. Liang, J. Zhang, “Oblique tunnel portal effects on train and tunnel aerodynamics based on moving model tests,” J. Wind Eng. Ind. Aerodyn., 167, 128–139, 2017.
  • [24] M.S. Howe, “The genetically optimized tunnel-entrance hood,” J. Fluids Struct., 23 (8), 1231–1250, 2007.
  • [25] D. Heine, K. Ehrenfried, G. Heine, S. Huntgeburth, “Experimental and theoretical study of the pressure wave generation in railway tunnels with vented tunnel portals,” J. Wind Eng. Ind. Aerodyn., 176, 290–300, 2018.
  • [26] X. Xiang, L. Xue, B. Wang, W. Zou, “Mechanism and capability of ventilation open- ings for alleviating micro-pressure waves emitted from high-speed railway tunnels,” Build. Environ., 132 245–254, 2018.
  • [27] W. Li, T. Liu, P. Martinez-Vazquez, Z. Chen, Z. Guo, M. Li, H. Liu, “Aerodynamic effects of a high-speed train travelling through adjoining & separated tunnels,” Tunnelling and Underground Space Technology, 113, 103-973, 2021.
  • [28] Determination of railway tunnel cross-sectional areas on the basis of aerodynamic considerations, UIC code 779-11, 2005.
  • [29] L.N. Reddi, X. Ming, M.G. Hajra, I.M. Lee, “Permeability reduction of soil filters due to physical clogging,” Journal of Geotechnical and Geoenvironmental Engineering, 126 (3), 236–246, 2000.
  • [30] J.H. Shin, T.I. Addenbrooke, D.M. Potts, “A numerical study of the effect of groundwater movement on long-term tunnel behaviour,” Geotechnique, 52 (6), 391–403, 2002.
  • [31] C. Oggeri, G. Ova, “Quality in tunnelling,” Tunnelling and underground space technology, 19, 34, 2004.
  • [32] H.S. Jung, Y.S. Han, S.R. Chung, Chun, B.S., Lee, Y.J., “Evaluation of advanced drainage treatment for old tunnel drainage system in Korea,” Tunnelling and underground space technology, 38, 476–486, 2013.
  • [33] T. Gamisch, G. Girmscheid, “Future trends in construction and maintenance management of drainage systems in traffic tunnels,” Tunnelling Towards Better Cities, 5-2, 2005.
  • [34] H. Stripple, L. Bostrom, T. Ellison, C. Ewertson, P. Lund, R. Melander, “Evaluation of two different drainage systems for rock tunnels,” Tunnelling and Underground Space Technology, 58, 40–48, 2016.
  • [35] CARS, “Report on the Railway Tunnel Drainage Techniques,” Tech. rep. China Academy of Railway Sciences, Beijing (Chinese), 2016.
  • [36] DIN 4262–1: 2009–10, “Rohre und Formstücke für die unterirdische Entwässerung im Verkehrswege- und Tiefbau – Teil 1: Rohre, Formstücke und deren Verbindungen aus, PVC-U, PP und PE, 2009.
  • [37] C.J. Baker, “A review of train aerodynamics Part 2–Applications,” Aeronaut. J. 118 (1202), 345–382, 2014.
  • [38] J.Y. Kim, K.Y. Kim, “Effects of vent shaft location on the ventilation performance in a subway tunnel,” J. Wind Eng. Ind. Aerodyn. 97 (5), 174–179, 2009.
  • [39] M. Juraeva, J.H. Lee, D.J. Song, “A computational analysis of the train-wind to identify the best position for the air-curtain installation,” J. Wind Eng. Ind. Aerodyn, 99 (5), 554–559 ,2011.
  • [40] Y.D. Huang, L.I. Chan, N.K. Chang, “A numerical analysis of the ventilation perfor- mance for different ventilation strategies in a subway tunnel,” J. Hydrodyn. Ser. B 24 (2), 193–201, 2012.
  • [41] C.R. Chu, S.Y. Chien, C.Y. Wang, T.R. Wu, “Numerical simulation of two trains intersecting in a tunnel,” Tunnelling and Underground Space Technology, 42, 161–174, 2014.
  • [42] B. Diedrichs, S. Krajnovi, M. Berg, “On The Aerodynamics Of Car Body Vibrations Of High-Speed Trains Cruising İnside Tunnels,” Eng. Appl. Comput. Fluid Mech. 2 (1) 51–75, 2008.
  • [43] M.S. Howe, M. Iida, T. Fukuda, T. Maeda, “Theoretical And Experimental İnvestiga- Tion Of The Compression Wave Generated By A Train Entering A Tunnel With A Flared Portal,” J Fluid Mech 425, 111–132, 2000.
  • [44] M.S. Howe, M. Iida, T. Fukuda, “Influence of an unvented tunnel entrance hood on the compression wave generated by a high-speed train,” J. Fluids Struct. 17 (6) 833–853, 2003.
  • [45] M.S. Howe, A. Winslow, M. Iida, T. Fukuda, “Rapid calculation of the compression wave generated by a train entering a tunnel with a vented hood: short hoods,” J. Sound Vib., 311 (1–2), 254–268, 2008.
  • [46] M. Suzuki, Flow-induced vibration of high-speed trains in tunnels, The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, Heidelberg: Springer, 2004.
  • [47] J. Lee, J. Kim, “Approximate optimization of high-speed train nose shape for reduc- ing micropressure wave,” Struct. Multidiscipl. Optim. 35 (1) 79–87, 2008.
  • [48] D. Kolymbas, Tunnelling and Tunnel Mechanics A Rational Approach to Tunnelling, Heidelberg: Springer, 2005.
  • [49] P. Yüksel, "Demiryolları Planlama ve Tasarım Teknik Esasları,” Demiryolları, Limanlar, Havameydanları İnşaatı Genel Müdürlüğü, Ankara: 2007.
  • [50] Yüksel Proje Uluslararası A.Ş., “Ankara- İstanbul Hızlı Tren Projesi Tünel Destek Paftaları,” Yayımlanmamış, 2013.
  • [51] O. Şimşek, E.B. Aygar, A. Ertin, “Ankara- İstanbul Hızlı Tren Projesi Güvenlik Tünelleri Paftaları,” SİAL Yer Bilimleri Ltd. Şti., Yayımlanmamış, 2009.
  • [52] O., Şimşek, E.B. Aygar, “Bursa-Yenişehir Yüksek Hızlı Tren Projesi Drenaj Paftaları,” Fugro-SİAL Yer Bilimleri Ltd. Şti., Yayımlanmamış, 2014.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Article
Authors

Evren Poşluk 0000-0001-9520-5268

Publication Date January 31, 2022
Submission Date November 2, 2021
Published in Issue Year 2022

Cite

IEEE E. Poşluk, “Dünyadaki Son Gelişmeler Çerçevesinde Yüksek Hızlı Demiryolu Tünel Tasarımı ve Türkiye’deki Durum”, Demiryolu Mühendisliği, no. 15, pp. 13–29, January 2022, doi: 10.47072/demiryolu.1018008.