Research Article
BibTex RIS Cite

Raylı Sistem Araçlarının Koşum Takımı Üzengisi için Topoloji Optimizasyonu Uygulaması

Year 2022, , 139 - 152, 31.07.2022
https://doi.org/10.47072/demiryolu.1123977

Abstract

Yük ve yolcu taşımacılığında kullanılan raylı sistem araçlarının (vagon, lokomotif, tren vb.) birlikte hareket edebilmesini sağlayan bağlantı ekipmanlarının genel adı koşum takımıdır. Koşum takımları, araçlara gelen statik yüklerin iletimini sağlamanın yanı sıra elektriksel ve hava bağlantılarının aktarılmasında görevli olup, sistemi oluşturan elemanların tasarımı ve imalatı çeşitli standartlara göre yapılmaktadır. Diğer yandan, lojistik sektöründe daha hızlı ve aynı zamanda güvenli taşımacılık açısından araçları oluşturan tüm parçaların hafifletilmesi önemlidir. Bu çalışmada, minimum ağırlıkta ve yüksek performanslı parçaların tasarımında etkili bir araç olan topoloji optimizasyonu ile koşum takımı elemanlarından üzenginin tasarımı iyileştirilerek ağırlığının azaltılması hedeflenmiştir. Topoloji optimizasyonunda yoğunluk yöntemi olarak da bilinen cezalandırmalı katı izotropik malzeme (SIMP) yönteminden faydalanılmıştır. Öncelikle, standarda uygun olarak modellenen koşum takımı üzengisine 120 kN ve 150 kN yükleme durumları için sonlu elemanlar analizi uygulanmıştır. Daha sonra, topoloji optimizasyonu ile geliştirilen model için aynı şartlarda FEA uygulanarak gerilme dağılımları ve yer değiştirme miktarları karşılaştırılmıştır. Her iki yükleme durumu için en yüksek Von Mises gerilmesi sırasıyla 176,30 MPa ve 220,40 MPa olarak elde edilmiştir. Ayrıca, yeni tasarım üzengiler için en yüksek yer değiştirme miktarları 0,23 mm ve 0,28 mm olarak hesaplanmış olup, bu değerler ilgili standartta belirtilen sınırlar içindedir. Sonuç olarak, topoloji optimizasyonu başarıyla uygulanarak üzenginin kütlesi %9,04 azaltılmıştır. Ayrıca, topoloji optimizasyonu ile geliştirilen model geometrisindeki karmaşıklıktan dolayı üzenginin eklemeli imalat teknolojisiyle üretiminin daha elverişli olduğu kanaatine varılmıştır. Tüm sonuçlar, topoloji optimizasyon metodolojisinin raylı sistem araçlarının ağırlığının azaltılmasında güvenle uygulanabileceğini ve böylece sürdürülebilirliğe önemli katkılar verilebileceğini göstermektedir.

References

  • [1] T.C. Millî Eğitim Bakanlığı, Raylı sistemler teknolojisi:Mekanik sistemler, Ankara, 2013.
  • [2] C. Özarpa, H. Botsalı ve B.F. Kınacı, “Raylı sistemlerde kullanılan cer kancasının topoloji optimizasyonuna uygunluğunun değerlendirilmesi,” Demiryolu Mühendisliği, c. 15, ss. 1- 12, 2022.
  • [3] S. M. Noughabi, K. Dehghani and M. Pouranvari, “Failure analysis of automatic coupler SA-3 in railway carriages,” Eng. Fail. Anal., c. 14, sy. 5, ss. 903-912, 2007.
  • [4] M. Günay, M.E. Korkmaz and R. Özmen, “An investigation on braking systems used in railway vehicles,” Eng. Sci. Technol. an Int. J., vol. 23, pp. 421-430, 2020.
  • [5] E. V. Rosa, L. Rios ve V. Queral, “Progress on the interface between UPP and CPRHS (Cask and Plug Remote Handling System) tractor/gripping tool for ITER,” Fusion Eng. Des., vol. 88, no. 9-10, pp. 2168-2172, 2013.
  • [6] M. Nold, F. Corman, “Dynamic train unit coupling and decoupling at cruising speed: Systematic classification, operational potentials, and research agenda,” J. Rail Transp. Plan. Manag., vol.18 no. 1-26, pp. 100-241, 2021.
  • [7] “EN 15566:2017 Railway applications - Railway rolling stock - Draw gear and screw coupling,” Accessed: April 13, 2022. [Online]. Available: https://www.en-standard.eu/une-en-15566-2017-railway-applications-railway-rolling-stock-draw-gear-and-screw-coupling/
  • [8] R. Ulewicz, F. Novỳ, P. Novák and P. Palček, “The investigation of the fatigue failure of passenger carriage draw-hook,” Eng. Fail. Anal., vol. 104, pp. 609-616, 2019.
  • [9] D. Pojani and D. Stead, “Sustainable urban transport in the developing world: beyond megacities,” Sustainability no. 7 pp. 7784–7805, 2015, doi:10.3390/ su7067784.
  • [10] M. Bayraktar, N. Tahrali and R. Guclu, “Reliability and fatigue life evaluation of railway axles,” J. Mech. Sci. Technol., vol. 24, pp. 671–679, 2010, doi: 10.1007/ s12206-009-1219-1.
  • [11] U. Zerbst, C. Klinger, D. Klingbeil, “Structural assesment of railway axles – a critical review,” Eng. Fail. Anal., vol. 35, pp. 54–65, 2013.
  • [12] N. Top, H. Gökçe ve İ. Şahin, ‘’Eklemeli imalat için topoloji optimizasyonu: el freni mekanizması uygulaması, “Selçuk-Teknik Dergisi, c. 18, s. 1, ss. 1-13, 2019.
  • [13] M. Donofrio, “Topology optimization and advanced manufacturing as a means for the design of sustainable building components,” Procedia Eng., vol. 145, pp. 638-645, 2016. doi: 10.1016/j.proeng.2016.04.054
  • [14] J. Liu and Y. Ma, “A survey of manufacturing oriented topology optimization methods,” Adv. Eng. Softw., vol. 100, pp. 161-175, 2016.
  • [15] A.L.R. Prathyusha and G. Raghu Babu, “A review on additive manufacturing and topology optimization process for weight reduction studies in various industrial applications,” Mater. Today: Proc., pp. 1-9, 2022.
  • [16] Y. Li, Y. Cheng, Q. Hu, S. Zhou, L. Ma, M.K. Lim, “The influence of additive manufacturing on the configuration of make-to-order spare parts supply chain under heterogeneous demand,” Int. J. Prod. Res., vol. 57(2), pp. 1-20, 2018.
  • [17] A. Killen, L. Fu, S. Coxon, R. Napper, “Exploring the use of additive manufacturing in providing an alternative approach to the design, manufacture and maintenance of interior rail components,” Australasian Transport Research Forum, pp.1–16, 2018.
  • [18] A.D. Toth et al., “Report on case studies of additive manufacturing in the South African railway industry,” Sci. Afr., vol. 16, 2022, doi.org/10.1016/j.sciaf.2022.e01219.
  • [19] H. Fu and S. Kaewunruen, “State-of-the-art review on additive manufacturing technology in railway infrastructure systems,” Compos. Sci., vol. 6, pp. 1-21, 2022.
  • [20] B. Dener, “Çarpışma sönümleyici konstrüksiyonun yapısal optimizasyon yöntemleri kullanılarak hafifletilmesi,” Y. Lisans tezi, Fen Bilimleri Enstitüsü, Bursa Uludağ Üniversitesi, Bursa, 2021.
  • [21] E.İ. Albak, “Formula SAE aracında ağırlık azaltılmasına yönelik fren pedalının topoloji optimizasyonu yöntemiyle optimum tasarımı,” Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, c. 11(1), ss. 328-334, 2019.
  • [22] W. Ferdous et al., “Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load,” J. Compos. Constr., vol. 22, no. 2, pp. 1-18, 2018.
  • [23] H. Lee, S. Jung, H. Jang, “Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels,” Proc. Inst. Mech. Eng. Pt. F J. Rail and Rapid Transit, vol. 230, no. 4, pp. 1283-1296, 2016.
  • [24] T. Kuczek, “Application of manufacturing constraints to structural optimization of thin-walled structures,” Eng. Optim., vol. 48, no. 2, pp. 351-360, 2015.
  • [25] R Muvunzi et al., “Analysis of potential materials for local production of a rail car component using additive manufacturing,” Heliyon, vol. 8, 2022, doi.org/10.1016/j.heliyon.2022.e09405.
  • [26] V. Vázquez, F. Velázquez-Villegas, G. Ascanio and F.C. Jiménez, “Design of an automotive subframe by topological optimization,” Genıería Mecánıcatecnología Y Desarrollo, vol. 7 no. 2, pp. 017- 024, 2013.
  • [27] J. H. Zhu, W.H. Zhang and L. Xia, “Topology optimization in aircraft and aerospace structures design,” Arch. Comput. Methods Eng., vol. 23, pp. 595–622, 2016.
  • [28] C. H. Chuang, S. Chen, R. J. Yang and P. Vogiatzis, “Topology optimization with additive manufacturing consideration for vehicle load path development,” Internat. J.Numer. Methods Eng. vol. 113, no.8, pp. 1434-1445, 2017.
  • [29] Q. Li, W. Chen, S. Liu and L. Tong, “Structural topology optimization considering connectivity constraint,” Struct. Multidiscip. Optim., vol. 54, no. 4, pp. 971–984, 2016.
  • [30] M. Abdi, R. Wildman and I. Ashcroft, “Evolutionary topology optimization using the extended finite element method and isolines,” Eng. Opt., vol. 46, no. 5, pp. 628-647, 2014
  • [31] M.P. Bendsoe and O. Sigmund, Topology optimization: Theory, methods, and applications. Springer Science & Business Media, Denmark, 2003.
  • [32] G.I.N. Rozvany, “A critical review of established methods of structural topology optimization,” Struct. Multidiscip. Optim., vol. 37, pp. 217-237, 2009.
  • [33] V.G. Sundararajan, “Topology optimization for additive manufacturing of customized meso-structures using homogenization and parametric smoothing functions,” M.Sc. dissertation, Mechanical Engineering, University of Texas, Austin, 2010.
  • [34] “EN 10083-2:2006 - Steels for quenching and tempering - Part 2: Technical delivery conditions for non alloy steels,” [Online]. Accessed: April 13, 2022. Available: https://regbar.com/wp-content/uploads/2019/09/EN-10083-2-2006.pdf.
  • [35] SolidWorks, “Dassault Systemes documentation”, [Online]. Accesed: June. 14, 2022. Available: https://help.solidworks.com/2021/English/SolidWorks/cworks/c_Solid_Mesh.htm
  • [36] X. Wang et al., “Overhang structure and accuracy in laser engineered net shaping of Fe-Cr steel,” Opt. Laser Technol., vol. 106, pp. 357-365, 2018.

Topology Optimization Application for Coupling Link of Rail System Vehicles

Year 2022, , 139 - 152, 31.07.2022
https://doi.org/10.47072/demiryolu.1123977

Abstract

Coupling link is the general name of the connection equipment that enables the rail system vehicles (wagon, locomotive, train, etc.) used in freight and passenger transportation to move together. Coupling links are responsible for the transmission of static loads coming to the vehicles, as well as the transfer of electrical and air connections, and the design and manufacture of the elements that make up the system are made according to various standards. On the other hand, it is important to lighten all the parts that make up the vehicles in terms of faster and at the same time safe transportation in the logistics sector. In this study, it is aimed to reduce the weight by improving the design of the coupling link, which is one of the hook coupling elements, with topology optimization. Penalized solid isotropic material (SIMP) method, also known as density method, was used in topology optimization. Firstly, finite element analysis was applied to the coupling link modeled in accordance with the standard for 120 kN and 150 kN loading conditions. Then, stress distributions and displacements were compared by applying FEA under the same conditions for the model developed with topology optimization. The highest Von Mises stresses for both loading conditions were obtained as 176,30 MPa and 220,40 MPa, respectively. In addition, the highest displacement amounts for the new design coupling links are calculated as 0,23 mm and 0,28 mm, and these values are within the limits specified in the relevant standard. As a result, the mass of coupling link was reduced by 9,04% by successfully applying the topology optimization. In addition, it has been concluded that the coupling link is more convenient to manufacture with additive manufacturing technology due to the complexity in the geometry of the model developed with topology optimization. All results show that the topology optimization methodology can be safely applied in reducing the weight of rail system vehicles, thus making significant contributions to sustainability.

References

  • [1] T.C. Millî Eğitim Bakanlığı, Raylı sistemler teknolojisi:Mekanik sistemler, Ankara, 2013.
  • [2] C. Özarpa, H. Botsalı ve B.F. Kınacı, “Raylı sistemlerde kullanılan cer kancasının topoloji optimizasyonuna uygunluğunun değerlendirilmesi,” Demiryolu Mühendisliği, c. 15, ss. 1- 12, 2022.
  • [3] S. M. Noughabi, K. Dehghani and M. Pouranvari, “Failure analysis of automatic coupler SA-3 in railway carriages,” Eng. Fail. Anal., c. 14, sy. 5, ss. 903-912, 2007.
  • [4] M. Günay, M.E. Korkmaz and R. Özmen, “An investigation on braking systems used in railway vehicles,” Eng. Sci. Technol. an Int. J., vol. 23, pp. 421-430, 2020.
  • [5] E. V. Rosa, L. Rios ve V. Queral, “Progress on the interface between UPP and CPRHS (Cask and Plug Remote Handling System) tractor/gripping tool for ITER,” Fusion Eng. Des., vol. 88, no. 9-10, pp. 2168-2172, 2013.
  • [6] M. Nold, F. Corman, “Dynamic train unit coupling and decoupling at cruising speed: Systematic classification, operational potentials, and research agenda,” J. Rail Transp. Plan. Manag., vol.18 no. 1-26, pp. 100-241, 2021.
  • [7] “EN 15566:2017 Railway applications - Railway rolling stock - Draw gear and screw coupling,” Accessed: April 13, 2022. [Online]. Available: https://www.en-standard.eu/une-en-15566-2017-railway-applications-railway-rolling-stock-draw-gear-and-screw-coupling/
  • [8] R. Ulewicz, F. Novỳ, P. Novák and P. Palček, “The investigation of the fatigue failure of passenger carriage draw-hook,” Eng. Fail. Anal., vol. 104, pp. 609-616, 2019.
  • [9] D. Pojani and D. Stead, “Sustainable urban transport in the developing world: beyond megacities,” Sustainability no. 7 pp. 7784–7805, 2015, doi:10.3390/ su7067784.
  • [10] M. Bayraktar, N. Tahrali and R. Guclu, “Reliability and fatigue life evaluation of railway axles,” J. Mech. Sci. Technol., vol. 24, pp. 671–679, 2010, doi: 10.1007/ s12206-009-1219-1.
  • [11] U. Zerbst, C. Klinger, D. Klingbeil, “Structural assesment of railway axles – a critical review,” Eng. Fail. Anal., vol. 35, pp. 54–65, 2013.
  • [12] N. Top, H. Gökçe ve İ. Şahin, ‘’Eklemeli imalat için topoloji optimizasyonu: el freni mekanizması uygulaması, “Selçuk-Teknik Dergisi, c. 18, s. 1, ss. 1-13, 2019.
  • [13] M. Donofrio, “Topology optimization and advanced manufacturing as a means for the design of sustainable building components,” Procedia Eng., vol. 145, pp. 638-645, 2016. doi: 10.1016/j.proeng.2016.04.054
  • [14] J. Liu and Y. Ma, “A survey of manufacturing oriented topology optimization methods,” Adv. Eng. Softw., vol. 100, pp. 161-175, 2016.
  • [15] A.L.R. Prathyusha and G. Raghu Babu, “A review on additive manufacturing and topology optimization process for weight reduction studies in various industrial applications,” Mater. Today: Proc., pp. 1-9, 2022.
  • [16] Y. Li, Y. Cheng, Q. Hu, S. Zhou, L. Ma, M.K. Lim, “The influence of additive manufacturing on the configuration of make-to-order spare parts supply chain under heterogeneous demand,” Int. J. Prod. Res., vol. 57(2), pp. 1-20, 2018.
  • [17] A. Killen, L. Fu, S. Coxon, R. Napper, “Exploring the use of additive manufacturing in providing an alternative approach to the design, manufacture and maintenance of interior rail components,” Australasian Transport Research Forum, pp.1–16, 2018.
  • [18] A.D. Toth et al., “Report on case studies of additive manufacturing in the South African railway industry,” Sci. Afr., vol. 16, 2022, doi.org/10.1016/j.sciaf.2022.e01219.
  • [19] H. Fu and S. Kaewunruen, “State-of-the-art review on additive manufacturing technology in railway infrastructure systems,” Compos. Sci., vol. 6, pp. 1-21, 2022.
  • [20] B. Dener, “Çarpışma sönümleyici konstrüksiyonun yapısal optimizasyon yöntemleri kullanılarak hafifletilmesi,” Y. Lisans tezi, Fen Bilimleri Enstitüsü, Bursa Uludağ Üniversitesi, Bursa, 2021.
  • [21] E.İ. Albak, “Formula SAE aracında ağırlık azaltılmasına yönelik fren pedalının topoloji optimizasyonu yöntemiyle optimum tasarımı,” Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, c. 11(1), ss. 328-334, 2019.
  • [22] W. Ferdous et al., “Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load,” J. Compos. Constr., vol. 22, no. 2, pp. 1-18, 2018.
  • [23] H. Lee, S. Jung, H. Jang, “Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels,” Proc. Inst. Mech. Eng. Pt. F J. Rail and Rapid Transit, vol. 230, no. 4, pp. 1283-1296, 2016.
  • [24] T. Kuczek, “Application of manufacturing constraints to structural optimization of thin-walled structures,” Eng. Optim., vol. 48, no. 2, pp. 351-360, 2015.
  • [25] R Muvunzi et al., “Analysis of potential materials for local production of a rail car component using additive manufacturing,” Heliyon, vol. 8, 2022, doi.org/10.1016/j.heliyon.2022.e09405.
  • [26] V. Vázquez, F. Velázquez-Villegas, G. Ascanio and F.C. Jiménez, “Design of an automotive subframe by topological optimization,” Genıería Mecánıcatecnología Y Desarrollo, vol. 7 no. 2, pp. 017- 024, 2013.
  • [27] J. H. Zhu, W.H. Zhang and L. Xia, “Topology optimization in aircraft and aerospace structures design,” Arch. Comput. Methods Eng., vol. 23, pp. 595–622, 2016.
  • [28] C. H. Chuang, S. Chen, R. J. Yang and P. Vogiatzis, “Topology optimization with additive manufacturing consideration for vehicle load path development,” Internat. J.Numer. Methods Eng. vol. 113, no.8, pp. 1434-1445, 2017.
  • [29] Q. Li, W. Chen, S. Liu and L. Tong, “Structural topology optimization considering connectivity constraint,” Struct. Multidiscip. Optim., vol. 54, no. 4, pp. 971–984, 2016.
  • [30] M. Abdi, R. Wildman and I. Ashcroft, “Evolutionary topology optimization using the extended finite element method and isolines,” Eng. Opt., vol. 46, no. 5, pp. 628-647, 2014
  • [31] M.P. Bendsoe and O. Sigmund, Topology optimization: Theory, methods, and applications. Springer Science & Business Media, Denmark, 2003.
  • [32] G.I.N. Rozvany, “A critical review of established methods of structural topology optimization,” Struct. Multidiscip. Optim., vol. 37, pp. 217-237, 2009.
  • [33] V.G. Sundararajan, “Topology optimization for additive manufacturing of customized meso-structures using homogenization and parametric smoothing functions,” M.Sc. dissertation, Mechanical Engineering, University of Texas, Austin, 2010.
  • [34] “EN 10083-2:2006 - Steels for quenching and tempering - Part 2: Technical delivery conditions for non alloy steels,” [Online]. Accessed: April 13, 2022. Available: https://regbar.com/wp-content/uploads/2019/09/EN-10083-2-2006.pdf.
  • [35] SolidWorks, “Dassault Systemes documentation”, [Online]. Accesed: June. 14, 2022. Available: https://help.solidworks.com/2021/English/SolidWorks/cworks/c_Solid_Mesh.htm
  • [36] X. Wang et al., “Overhang structure and accuracy in laser engineered net shaping of Fe-Cr steel,” Opt. Laser Technol., vol. 106, pp. 357-365, 2018.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Article
Authors

Emre Ulusoy 0000-0002-4672-1845

Mert İstek 0000-0002-5805-2802

Mustafa Günay 0000-0002-1281-1359

Publication Date July 31, 2022
Submission Date May 31, 2022
Published in Issue Year 2022

Cite

IEEE E. Ulusoy, M. İstek, and M. Günay, “Raylı Sistem Araçlarının Koşum Takımı Üzengisi için Topoloji Optimizasyonu Uygulaması”, Demiryolu Mühendisliği, no. 16, pp. 139–152, July 2022, doi: 10.47072/demiryolu.1123977.