Research Article
BibTex RIS Cite

On the Dynamic Analysis of Freight Wagon-Track Interaction

Year 2023, , 223 - 235, 31.01.2023
https://doi.org/10.47072/demiryolu.1176012

Abstract

In this study, a six-degrees-of-freedom half-car model for a freight wagon is used to study the ride motions of the vehicle under random rail inputs. As a rail input, the track profiles taken from Federal Railroad-Administration (FRA) international standard are used. A coupled vertical vehicle-track system is formed as a polytopic function of the track roughness parameter and vehicle speed and their influence on the vehicle dynamics is discussed. Then an optimization problem with a single objective function is formulated for a range of track roughness parameters and vehicle speeds. H_∞ control focuses on obtaining a robustness concerning the uncertainty of the system. So, we used H_∞ optimization to obtain the solutions while maximizing the trade-off between the respective performance indices. Later, a controller with a fixed speed value is synthesized and the results are compared by using the frequency response plots and the root-mean-square values of the car body accelerations and secondary and primary suspension deflections. The simulation results demonstrate that the active system is effective in improving ride comfort while keeping the rail holding within allowable limits.

References

  • [1] A. Orvnäs, S. Stichel, and R. Persson, “Ride comfort improvements in a high-speed train with active secondary suspension,” J. Mech. Syst. Transp. Logist. (JSME), vol. 3, no. 1, pp. 206–215, 2010
  • [2] X. Lei, High speed railway track dynamics: Models, algorithms and applications. Singapore: Springer, 2017
  • [3] G. Kouroussis, D.P. Connoly and O. Verlinden, “Railway induced ground vibrations: A review of vehicle effects,” International Journal of Rail Transportation, vol. 2, no. 2, pp. 69-110, 2014
  • [4] E. Bernal, M. Spiryagin, and C. Cole, “Wheel flat detectability for Y25 railway freight wagon using vehicle component acceleration signals,” Vehicle System Dynamics, vol. 58, no. 12, pp. 1893-1913, 2020
  • [5] M. Buonsanti and G. Leonardi, “Dynamic modelling of freight wagon with modified bogies,” European Journal of Scientific Research, vol. 86, pp. 274- 282, 2012
  • [6] P. A. Jönsson, “Dynamic vehicle-track interaction of European standard freight wagons with link suspension” Ph.D. dissertation, Dept. Aeron. and Veh. Eng., Royal Institute of Technology, Stockholm, 2007
  • [7] C. Jones and J. Block, “Prediction of ground vibration from freight trains,” Journal of Sound and Vibration, vol. 193, no. 1, pp. 205–213, 1996
  • [8] Guide to evaluation of human exposure to vibration in buildings (1Hz-80Hz), BS 6472-1, British Standards Institution, 2008
  • [9] Mechanical vibration-ground-borne noise and vibration arising from rail systems - Part 1: General guidance, BS ISO 14837-1, British Standards Institution, 2005
  • [10] M. Buonsanti, and G. Leonardi, (2012). “Dynamic modelling of freight wagon with modified bogies,” Eurpoean Journal of Scientific Research, vol. 86, pp. 274–282, 2012
  • [11] F. Hassan, A.C. Zolotas, and R.M. Margetts, “Optimised PID control for tilting trains,” Syst. Sci. Control Eng., vol. 5, no. 1, pp. 25–41, 2017
  • [12] R. Zhou, A Zolotas, and R. Goodall R, “Integrated tilt with active lateral secondary suspension control for high speed railway vehicles,” Mechatronics, vol. 21, no. 6, pp. 1108–1122, 2011
  • [13] E.F. Colombo, E. Di Gialleonardo, A. Facchinetti and S. Bruni, “Active carbody roll control in railway vehicles using hydraulic actuation, Control Engineering Practice, vol. 31, pp. 24–34, 2014
  • [14] R. Zhou, A. Zolotas, and R. Goodall, “Robust system state estimation for active suspension control in high-speed tilting trains,” Vehicle System Dynamics, vol. 52, pp. 355–369, 2014
  • [15] A. Soyiç Leblebici and S. Türkay, “Track modelling and control of a railway vehicle,” 7th IFAC Symposium on Mechatronic Systems, 2016, pp. 274–281
  • [16] A. Soyiç Leblebici and S. Türkay “Hybrid semi-active controller design for a high speed railway vehicle,” Turkish National Conference on Automatic Control (TOK2018), Kayseri, Turkey, 2018, pp. 528–533
  • [17] P. Apkarian, H. D. Tuan, and J. Bernussou, “Continuous-time analysis, eigenstructure assignment, and H_2 synthesis with enhanced linear matrix inequalities (LMI) characterizations,” IEEE Transactions on Automatic Control, vol. 46, no. 12, pp. 1941-1946, 2001
  • [18] A. Hamid, K. Rasmussen, M. Baluja, and T. Yang, Analytical Descriptions of Track Geometry Variations Volume I, National Technical Information Service, U.S. Department of Commerce, Springfield, 1983
  • [19] P. Gahinet, A. Nemirovski, A. Laub and M. Chilali, LMI control toolbox for use with MATLAB. The Mathworks Inc., 1995

Yük Vagonu-Hat Dinamik Analizi

Year 2023, , 223 - 235, 31.01.2023
https://doi.org/10.47072/demiryolu.1176012

Abstract

Bu çalışmada, bir yük vagonu için altı serbestlik dereceli yarım araç modeli, rassal ray girdileri ile uyarılmış aracın düşey sürüş hareketlerini incelemek için kullanılacaktır. Rassal ray girdisi olarak, Federal Railroad Administration (FRA) uluslararası standardı tarafından tanımlanmış iz profilleri kullanılacaktır. Birleştirilmiş düşey araç-iz sistemi polytopic bir fonksiyon olarak iz pürüzlülük parametresi ve araç hızı cinsinden oluşturulmuştur ve araç dinamiği üzerindeki etkileri tartışılmıştır. Daha sonra, tek amaçlı optimizasyon problemi, çeşitli araç hızları ve pürüzlülük parametreleri için formüle edilmiştir. H_∞ denetleyicisi systemin belirsizliklerini göze alarak gürbüzlük elde etmeyi hedefler. Bu nedenle sonuçlar H_∞ optimizasyonu kullanılarak, ilgili performans endeksleri arasında en yüksek uzlaşım eğrilerini elde etmek için kullanılmıştır. Çalışmanın son kısmında, sabit hızlı bir denetleyici sentezlenmiştir ve sonuçlar araç gövdesi ivmeleri, ikincil ve birincil süspansiyon deformasyonları için frekans yanıt grafikleri ve kare-kök-ortalama değerleri kullanılarak karşılaştırılmıştır. Yapılan benzetim çalışmaları, aktif sistemin sürüş konforunu iyileştirirken, ray tutuşunu izin verilen limitlerde korumakta başarılı olduğunu göstermiştir.

References

  • [1] A. Orvnäs, S. Stichel, and R. Persson, “Ride comfort improvements in a high-speed train with active secondary suspension,” J. Mech. Syst. Transp. Logist. (JSME), vol. 3, no. 1, pp. 206–215, 2010
  • [2] X. Lei, High speed railway track dynamics: Models, algorithms and applications. Singapore: Springer, 2017
  • [3] G. Kouroussis, D.P. Connoly and O. Verlinden, “Railway induced ground vibrations: A review of vehicle effects,” International Journal of Rail Transportation, vol. 2, no. 2, pp. 69-110, 2014
  • [4] E. Bernal, M. Spiryagin, and C. Cole, “Wheel flat detectability for Y25 railway freight wagon using vehicle component acceleration signals,” Vehicle System Dynamics, vol. 58, no. 12, pp. 1893-1913, 2020
  • [5] M. Buonsanti and G. Leonardi, “Dynamic modelling of freight wagon with modified bogies,” European Journal of Scientific Research, vol. 86, pp. 274- 282, 2012
  • [6] P. A. Jönsson, “Dynamic vehicle-track interaction of European standard freight wagons with link suspension” Ph.D. dissertation, Dept. Aeron. and Veh. Eng., Royal Institute of Technology, Stockholm, 2007
  • [7] C. Jones and J. Block, “Prediction of ground vibration from freight trains,” Journal of Sound and Vibration, vol. 193, no. 1, pp. 205–213, 1996
  • [8] Guide to evaluation of human exposure to vibration in buildings (1Hz-80Hz), BS 6472-1, British Standards Institution, 2008
  • [9] Mechanical vibration-ground-borne noise and vibration arising from rail systems - Part 1: General guidance, BS ISO 14837-1, British Standards Institution, 2005
  • [10] M. Buonsanti, and G. Leonardi, (2012). “Dynamic modelling of freight wagon with modified bogies,” Eurpoean Journal of Scientific Research, vol. 86, pp. 274–282, 2012
  • [11] F. Hassan, A.C. Zolotas, and R.M. Margetts, “Optimised PID control for tilting trains,” Syst. Sci. Control Eng., vol. 5, no. 1, pp. 25–41, 2017
  • [12] R. Zhou, A Zolotas, and R. Goodall R, “Integrated tilt with active lateral secondary suspension control for high speed railway vehicles,” Mechatronics, vol. 21, no. 6, pp. 1108–1122, 2011
  • [13] E.F. Colombo, E. Di Gialleonardo, A. Facchinetti and S. Bruni, “Active carbody roll control in railway vehicles using hydraulic actuation, Control Engineering Practice, vol. 31, pp. 24–34, 2014
  • [14] R. Zhou, A. Zolotas, and R. Goodall, “Robust system state estimation for active suspension control in high-speed tilting trains,” Vehicle System Dynamics, vol. 52, pp. 355–369, 2014
  • [15] A. Soyiç Leblebici and S. Türkay, “Track modelling and control of a railway vehicle,” 7th IFAC Symposium on Mechatronic Systems, 2016, pp. 274–281
  • [16] A. Soyiç Leblebici and S. Türkay “Hybrid semi-active controller design for a high speed railway vehicle,” Turkish National Conference on Automatic Control (TOK2018), Kayseri, Turkey, 2018, pp. 528–533
  • [17] P. Apkarian, H. D. Tuan, and J. Bernussou, “Continuous-time analysis, eigenstructure assignment, and H_2 synthesis with enhanced linear matrix inequalities (LMI) characterizations,” IEEE Transactions on Automatic Control, vol. 46, no. 12, pp. 1941-1946, 2001
  • [18] A. Hamid, K. Rasmussen, M. Baluja, and T. Yang, Analytical Descriptions of Track Geometry Variations Volume I, National Technical Information Service, U.S. Department of Commerce, Springfield, 1983
  • [19] P. Gahinet, A. Nemirovski, A. Laub and M. Chilali, LMI control toolbox for use with MATLAB. The Mathworks Inc., 1995
There are 19 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Article
Authors

Aslı Soyiç Leblebici 0000-0001-7346-5368

Semiha Türkay 0000-0002-9370-5557

Publication Date January 31, 2023
Submission Date September 15, 2022
Published in Issue Year 2023

Cite

IEEE A. Soyiç Leblebici and S. Türkay, “On the Dynamic Analysis of Freight Wagon-Track Interaction”, Demiryolu Mühendisliği, no. 17, pp. 223–235, January 2023, doi: 10.47072/demiryolu.1176012.