Designing of Locomotive Speed Controller and Closed Loop Simulation for Train Driving Automation
Year 2024,
, 133 - 146, 31.01.2024
Ege Günindi
,
Hakan Ulker
Abstract
Automation of the driving of trains consisting of locomotive and wagons operated in open rail networks is still at a much lower level than in closed rail networks. In the PID (proportional-integral-derivative) control strategy for the train driving automation in Türkiye’s open rail network, a PI (proportional-integral) controller has been designed to control the speed by the use of traction and dynamic brake forces in a locomotive with similar specifications to Türkiye’s first domestic and national electric mainline locomotive E5000. The designed PI controller is integrated into the model created in the MATLAB Simulink for dynamic system modeling of the cruise of the train. In the closed loop system created in this way, the simulation results for different values of some parameters in selected phases of the cruise of a currently operated freight train in accordance with the real operating conditions have shown that the designed PI controller is successful enough.
References
- [1] E. Günindi, T. Efil, and H. Ülker, “Lokomotif ve vagonlardan müteşekkil bir trenin dinamik modellenmesi ve açık çevrim simülasyonu,” Demiryolu Mühendisliği, no. 18, pp. 171–183, Jul. 2023, doi: 10.47072/demiryolu.1324847.
- [2] R. C. Ramírez, I. Adin, J. Goya, U. Alvarado, A. Brazalez, and J. Mendizabal, “Freight train in the age of self-driving vehicles. A taxonomy review,” in IEEE Access, vol. 10, pp. 9750–9762, 2022, doi: 10.1109/ACCESS.2022.3144602.
- [3] Progress Rail, Talos™ Train Automation. (Nov. 22, 2019). Accessed: Oct. 11, 2023. [Online Video]. Available: https://www.youtube.com/watch?v=wB6VC1JlldU
- [4] Wabtec Corporation, Wabtec’s Trip Optimizer™. (Aug. 26, 2020). Accessed: Oct. 11, 2023. [Online Video]. Available: https://www.youtube.com/watch?v=kCwajO3dMGs
- [5] Alstom, “SNCF and its partners run the first semi-autonomous train of the national railway network,” [Online]. Available: https://www.alstom.com/press-releases-news/2020/12/sncf-and-its-partners-run-first-semi-autonomous-train-national-railway [Accessed Oct. 11, 2023]
- [6] SNCF, “Driverless trains: On track for a rail revolution,” [Online]. Available: https://www.sncf.com/en/innovation-development/innovation-research/driverless-trains-to-run-in-2023 [Accessed Oct. 11, 2023]
- [7] TCDD, “Kapasite Yönetim Dairesi Görevleri,” [Online]. Available: https://www.tcdd.gov.tr/kapasite-yonetim-dairesi-gorevleri [Accessed Oct. 11, 2023]
- [8] TCDD, “Enerji yönetimi ve iklim değişikliği eylem planı 2023-2025,” T.C. Devlet Demiryolları İşletmesi Genel Müdürlüğü, Ankara, Türkiye, Nov. 28, 2022. Accessed: Oct. 11, 2023. [Online]. Available: https://static.tcdd.gov.tr/webfiles/userfiles/files/eylemplani/eylemplani.pdf
- [9] Railway applications - Urban guided transport management and command/control systems - Part 1: System principles and fundamental concepts, IEC 62290-1, 2014.
- [10] L. Cantone, T. Durand, A. Ottati, G. Russo, and R. Tione, “The digital automatic coupler (DAC): an effective way to sustainably increase the efficiency of freight transport in Europe,” Sustainability, vol. 14, no. 23, pp. 15671, Nov. 2022, doi: 10.3390/su142315671.
- [11] A. M. Rilo Cañás, T. Rozynek, and W. Sawczuk, “Test train with digital automatic couplers DAC in Poland,” Rail Vehicles/Pojazdy Szynowe, Dec. 2022, doi: 10.53502/RAIL-158487.
- [12] E. Taşkaya, “Fotovoltaik-yakıt hücreli bir hibrit elektrikli aracın modellenmesi ve simülasyonu,” M.S. thesis, Bursa Tech. Univ. Graduate School, Bursa, Türkiye, 2022.
- [13] J. Wang, W. Li, J. Li, Y. Liu, B. Song, and H. Gao, “Modeling a driver’s directional and longitudinal speed control based on racing track features,” Shock and Vib., vol. 2018, Art. no. 7487295, doi: 10.1155/2018/7487295.
- [14] X. Wang, Z. Xiao, M. Chen, P. Sun, Q. Wang, and X. Feng, “Energy-efficient speed profile optimization and sliding mode speed tracking for metros,” Energies, vol. 13, no. 22, pp. 6093, Nov. 2020, doi: 10.3390/en13226093.
- [15] K. D. Kirmayer and S. G. Yurasko, “Automation comments,” The Association of American Railroads, Washington, DC, USA, May 7, 2018. Accessed: Oct. 11, 2023. [Online]. Available: https://www.aar.org/wp-content/uploads/2018/05/AAR-Automation-comments.pdf
- [16] TCDD, “2024 Şebeke Bildirimi,” T.C. Devlet Demiryolları İşletmesi Genel Müdürlüğü, Ankara, Türkiye, Version 8.1, 2023. Accessed: Oct. 11, 2023. [Online]. Available: https://static.tcdd.gov.tr/webfiles/userfiles/files/sebekebildirimi/2024/2024sebekebildirimi801.pdf
- [17] Standard designation of axle arrangement on locomotives and multiple-unit sets, UIC Code 650, 1983.
- [18] Definition of the rated output of electric locomotives and motive power units, UIC Code 614, 1990.
- [19] H. A. Marta and K. D. Mels, “Wheel-rail adhesion,” ASME J. Eng. Ind., vol. 91, no. 3, pp. 839–846, Aug. 1969, doi: 10.1115/1.3591704.
- [20] A. E. Müller, “Adhesion and wheel slip,” The Brown Boveri Review, vol. 38, no. 7–8, Jul./Aug. 1951.
- [21] W. Zhang, J. Chen, X. Wu, and X. Jin, “Wheel/rail adhesion and analysis by using full scale roller rig,” Wear, vol. 253, no. 1–2, pp. 82–88, 2002. doi: 10.1016/S0043-1648(02)00086-8.
- [22] C. Urlu, Demiryolu araçlarının ileri dinamiği. Ankara, Türkiye: TCDD Yayınları, 1999.
- [23] E. W. Curtius and A. Kniffler, “Neue erkenntnisse über die haftung zwischen treibrad und schiene,” Elektrische Bahnen, vol. 21, no. 9, pp. 201–210, 1950.
- [24] Renfe, “Determinación de cargas máximas y rampas características,” Gerencia de Gestión de Capacidades de la U.N. de Circulación, Red Nacional de los Ferrocarriles Españoles, Madrid, Spain, Rep. Norma Técnica NT – GGC – 6, May 1, 2001.
- [25] Škoda Transportation a.s., “Cer Eğrileri ve Seyir Simülasyonları TCDD Elektrikli Lokomotifler,” 2011.
- [26] Specific sub-system requirements (traction, braking, etc.) for EMU/DMU, locomotives and driving coaches (Rolling stock sub-system requirements, requirements for economic purposes, requirements for railway standardisation), UIC Code 612-2, 2009.
- [27] Driver machine interfaces for EMU/DMU, locomotives and driving coaches - Functional and system requirements associated with harmonised driver machine interfaces, UIC Code 612-0, 2009.
- [28] Conditions to be observed by the dynamic brake of locomotives and motor coaches so that the extra braking effort produced can be taken into account for the calculation of the braked-weight, UIC Code 544-2, 1983.
- [29] Brakes - Disc brakes and their application - General conditions for the approval of brake pads, UIC Code 541-3, 2010.
- [30] GT26CW-2 Lokomotif Servis El Kitabı, 2nd ed., Electro-Motive Division of General Motors Co., La Grange, IL, USA, 2003.
- [31] Ö. Akbayır, “Demiryolu araçlarında enerji verimliliği ve tasarrufu,” in 3. Uluslararası Raylı Sistemler Mühendisliği Sempozyumu (ISERSE’16), Karabük, Türkiye, Oct. 13–15, 2016, pp. 457–465.
- [32] Eress - Erex, “Article: NMBS Logistics reduces energy consumption by 25%,” Dec. 21, 2015. [Online]. Available: https://eress.eu/news/news/article-nmbs-logistics-reduces-energy-consumption-by-25 [Accessed Oct. 11, 2023]
- [33] R. C. Dorf and R. H. Bishop, Modern Control Systems, 13th ed. Hoboken, NJ, USA: Pearson Educ. Inc., 2017.
- [34] C. Somaschini, D. Rocchi, G. Tomasini, and P. Schito, “Simplified estimation of train resistance parameters: full scale experimental tests and analysis,” in Proc. 3rd Int. Conf. Railway Tech. Res. Develop. and Maintenance, Stirlingshire, Scotland, 2016, Paper 58.
- [35] Ö. Akbayır and B. Başeğmez, “Türkiye şartlarına uygun vagon seyir direnci formülünün enerji verimliliği açısından deneysel olarak belirlenmesi,” Demiryolu Mühendisliği, no. 13, pp. 65–75, Jan. 2021, doi: 10.47072/demiryolu.796392.
- [36] G. Strahl, “Verfahren zur bestimmung der belastungsgrenzen der dampflokomotiven,” Z. Des. Vereins Dtsch. Ing., vol. 57, pp. 251, 1913.
Tren Makinistliğinin Otomasyonu İçin Lokomotif Hız Kontrolcüsü Tasarımı ve Kapalı Çevrim Simülasyonu
Year 2024,
, 133 - 146, 31.01.2024
Ege Günindi
,
Hakan Ulker
Abstract
Açık demiryolu şebekesinde işletilen, lokomotif ve vagonlardan müteşekkil trenlerin makinistliğindeki otomasyon henüz kapalı demiryolu şebekesindekine nazaran çok daha düşük seviyededir. Türkiye açık demiryolu şebekesindeki tren makinistliğinin otomasyonu için PID (oransal-integral-türev) kontrol stratejisinde, Türkiye’nin ilk yerli ve milli elektrikli anahat lokomotifi E5000 ile benzer özelliklerdeki bir lokomotifte cer ve dinamik fren kuvvetleriyle hız kontrolü yapılması maksadıyla PI (oransal-integral) kontrolcü tasarlanmıştır. Tasarlanan PI kontrolcü, tren seyrinin dinamik sistem modellemesi için MATLAB Simulink ortamında oluşturulan modele entegre edilmiştir. Bu şekilde oluşturulan kapalı çevrim sistemde, halihazırda işletilen bir yük treninin seyrinden gerçek işletmecilik şartlarına uygun şekilde seçilen safhalarda bazı parametrelerin farklı değerleri için yapılan simülasyon sonuçlarında, tasarlanan PI kontrolcünün yeterince başarılı olduğu görülmüştür.
References
- [1] E. Günindi, T. Efil, and H. Ülker, “Lokomotif ve vagonlardan müteşekkil bir trenin dinamik modellenmesi ve açık çevrim simülasyonu,” Demiryolu Mühendisliği, no. 18, pp. 171–183, Jul. 2023, doi: 10.47072/demiryolu.1324847.
- [2] R. C. Ramírez, I. Adin, J. Goya, U. Alvarado, A. Brazalez, and J. Mendizabal, “Freight train in the age of self-driving vehicles. A taxonomy review,” in IEEE Access, vol. 10, pp. 9750–9762, 2022, doi: 10.1109/ACCESS.2022.3144602.
- [3] Progress Rail, Talos™ Train Automation. (Nov. 22, 2019). Accessed: Oct. 11, 2023. [Online Video]. Available: https://www.youtube.com/watch?v=wB6VC1JlldU
- [4] Wabtec Corporation, Wabtec’s Trip Optimizer™. (Aug. 26, 2020). Accessed: Oct. 11, 2023. [Online Video]. Available: https://www.youtube.com/watch?v=kCwajO3dMGs
- [5] Alstom, “SNCF and its partners run the first semi-autonomous train of the national railway network,” [Online]. Available: https://www.alstom.com/press-releases-news/2020/12/sncf-and-its-partners-run-first-semi-autonomous-train-national-railway [Accessed Oct. 11, 2023]
- [6] SNCF, “Driverless trains: On track for a rail revolution,” [Online]. Available: https://www.sncf.com/en/innovation-development/innovation-research/driverless-trains-to-run-in-2023 [Accessed Oct. 11, 2023]
- [7] TCDD, “Kapasite Yönetim Dairesi Görevleri,” [Online]. Available: https://www.tcdd.gov.tr/kapasite-yonetim-dairesi-gorevleri [Accessed Oct. 11, 2023]
- [8] TCDD, “Enerji yönetimi ve iklim değişikliği eylem planı 2023-2025,” T.C. Devlet Demiryolları İşletmesi Genel Müdürlüğü, Ankara, Türkiye, Nov. 28, 2022. Accessed: Oct. 11, 2023. [Online]. Available: https://static.tcdd.gov.tr/webfiles/userfiles/files/eylemplani/eylemplani.pdf
- [9] Railway applications - Urban guided transport management and command/control systems - Part 1: System principles and fundamental concepts, IEC 62290-1, 2014.
- [10] L. Cantone, T. Durand, A. Ottati, G. Russo, and R. Tione, “The digital automatic coupler (DAC): an effective way to sustainably increase the efficiency of freight transport in Europe,” Sustainability, vol. 14, no. 23, pp. 15671, Nov. 2022, doi: 10.3390/su142315671.
- [11] A. M. Rilo Cañás, T. Rozynek, and W. Sawczuk, “Test train with digital automatic couplers DAC in Poland,” Rail Vehicles/Pojazdy Szynowe, Dec. 2022, doi: 10.53502/RAIL-158487.
- [12] E. Taşkaya, “Fotovoltaik-yakıt hücreli bir hibrit elektrikli aracın modellenmesi ve simülasyonu,” M.S. thesis, Bursa Tech. Univ. Graduate School, Bursa, Türkiye, 2022.
- [13] J. Wang, W. Li, J. Li, Y. Liu, B. Song, and H. Gao, “Modeling a driver’s directional and longitudinal speed control based on racing track features,” Shock and Vib., vol. 2018, Art. no. 7487295, doi: 10.1155/2018/7487295.
- [14] X. Wang, Z. Xiao, M. Chen, P. Sun, Q. Wang, and X. Feng, “Energy-efficient speed profile optimization and sliding mode speed tracking for metros,” Energies, vol. 13, no. 22, pp. 6093, Nov. 2020, doi: 10.3390/en13226093.
- [15] K. D. Kirmayer and S. G. Yurasko, “Automation comments,” The Association of American Railroads, Washington, DC, USA, May 7, 2018. Accessed: Oct. 11, 2023. [Online]. Available: https://www.aar.org/wp-content/uploads/2018/05/AAR-Automation-comments.pdf
- [16] TCDD, “2024 Şebeke Bildirimi,” T.C. Devlet Demiryolları İşletmesi Genel Müdürlüğü, Ankara, Türkiye, Version 8.1, 2023. Accessed: Oct. 11, 2023. [Online]. Available: https://static.tcdd.gov.tr/webfiles/userfiles/files/sebekebildirimi/2024/2024sebekebildirimi801.pdf
- [17] Standard designation of axle arrangement on locomotives and multiple-unit sets, UIC Code 650, 1983.
- [18] Definition of the rated output of electric locomotives and motive power units, UIC Code 614, 1990.
- [19] H. A. Marta and K. D. Mels, “Wheel-rail adhesion,” ASME J. Eng. Ind., vol. 91, no. 3, pp. 839–846, Aug. 1969, doi: 10.1115/1.3591704.
- [20] A. E. Müller, “Adhesion and wheel slip,” The Brown Boveri Review, vol. 38, no. 7–8, Jul./Aug. 1951.
- [21] W. Zhang, J. Chen, X. Wu, and X. Jin, “Wheel/rail adhesion and analysis by using full scale roller rig,” Wear, vol. 253, no. 1–2, pp. 82–88, 2002. doi: 10.1016/S0043-1648(02)00086-8.
- [22] C. Urlu, Demiryolu araçlarının ileri dinamiği. Ankara, Türkiye: TCDD Yayınları, 1999.
- [23] E. W. Curtius and A. Kniffler, “Neue erkenntnisse über die haftung zwischen treibrad und schiene,” Elektrische Bahnen, vol. 21, no. 9, pp. 201–210, 1950.
- [24] Renfe, “Determinación de cargas máximas y rampas características,” Gerencia de Gestión de Capacidades de la U.N. de Circulación, Red Nacional de los Ferrocarriles Españoles, Madrid, Spain, Rep. Norma Técnica NT – GGC – 6, May 1, 2001.
- [25] Škoda Transportation a.s., “Cer Eğrileri ve Seyir Simülasyonları TCDD Elektrikli Lokomotifler,” 2011.
- [26] Specific sub-system requirements (traction, braking, etc.) for EMU/DMU, locomotives and driving coaches (Rolling stock sub-system requirements, requirements for economic purposes, requirements for railway standardisation), UIC Code 612-2, 2009.
- [27] Driver machine interfaces for EMU/DMU, locomotives and driving coaches - Functional and system requirements associated with harmonised driver machine interfaces, UIC Code 612-0, 2009.
- [28] Conditions to be observed by the dynamic brake of locomotives and motor coaches so that the extra braking effort produced can be taken into account for the calculation of the braked-weight, UIC Code 544-2, 1983.
- [29] Brakes - Disc brakes and their application - General conditions for the approval of brake pads, UIC Code 541-3, 2010.
- [30] GT26CW-2 Lokomotif Servis El Kitabı, 2nd ed., Electro-Motive Division of General Motors Co., La Grange, IL, USA, 2003.
- [31] Ö. Akbayır, “Demiryolu araçlarında enerji verimliliği ve tasarrufu,” in 3. Uluslararası Raylı Sistemler Mühendisliği Sempozyumu (ISERSE’16), Karabük, Türkiye, Oct. 13–15, 2016, pp. 457–465.
- [32] Eress - Erex, “Article: NMBS Logistics reduces energy consumption by 25%,” Dec. 21, 2015. [Online]. Available: https://eress.eu/news/news/article-nmbs-logistics-reduces-energy-consumption-by-25 [Accessed Oct. 11, 2023]
- [33] R. C. Dorf and R. H. Bishop, Modern Control Systems, 13th ed. Hoboken, NJ, USA: Pearson Educ. Inc., 2017.
- [34] C. Somaschini, D. Rocchi, G. Tomasini, and P. Schito, “Simplified estimation of train resistance parameters: full scale experimental tests and analysis,” in Proc. 3rd Int. Conf. Railway Tech. Res. Develop. and Maintenance, Stirlingshire, Scotland, 2016, Paper 58.
- [35] Ö. Akbayır and B. Başeğmez, “Türkiye şartlarına uygun vagon seyir direnci formülünün enerji verimliliği açısından deneysel olarak belirlenmesi,” Demiryolu Mühendisliği, no. 13, pp. 65–75, Jan. 2021, doi: 10.47072/demiryolu.796392.
- [36] G. Strahl, “Verfahren zur bestimmung der belastungsgrenzen der dampflokomotiven,” Z. Des. Vereins Dtsch. Ing., vol. 57, pp. 251, 1913.