Demiryolu Yol Altyapısının Parçalanmış Atık Lastik - Kum Karışımları ile Stabilizasyonu
Year 2020,
, 34 - 42, 31.07.2020
Seyfettin Umut Umu
,
Derviş Volkan Okur
Abstract
Atık lastiklerin, inşaat mühendisliği uygulamalarında kullanımı son 30-40 yıl içinde oldukça yaygınlaşmıştır. Geoteknik mühendisliği uygulamalarında olumlu sonuçlar elde edilmiştir. Yol inşaatlarındaki stabilite ve oturma problemlerine karşı, istinat ve dolgu duvarlarında ise hafif malzeme ihtiyacına karşılık geri dolgu malzemesi olarak kullanılmaktadırlar. Çalışmanın amacı yapay olarak oluşturulan demiryolu altyapısına etki eden tekrarlı yükler altında malzeme davranışının incelenmesidir. Bu çalışmada, demiryolu altyapısı temel malzemesi olarak seçilen temiz standart kum örneği ile atık araç lastiklerinden parçalama ve öğütülme yolu ile elde edilen toz, çubuk ve amorf malzeme kütlece %5/95, %10/90 ve %15/85 oranlarında karıştırılmış ve oluşturulan karışım numuneler üzerinde rezonant kolon (RC) deneyleri yapılmıştır. Elde edilen veriler, 100 kPa efektif basınç altında, %5 oranında toz atık lastik karışımı içeren numunelerin kayma modüllerinin, 100 kPa referans örneğe göre, %0,001 birim kayma deformasyon seviyelerinde %26, %0,01 birim kayma deformasyon seviyelerinde %18 ve %0,1 birim kayma deformasyon seviyelerinde ise %35 civarında daha yüksek olduğunu göstermiştir.
Supporting Institution
Eskişehir Osmangazi Üniversitesi
Thanks
Bu çalışma Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri, Proje No:200915006 ile desteklenmiştir.
References
- [1] A. Erel, “Yüksek hızlı demiryollarında altyapının önemi ve tasarım ilkeleri,” 7. Ulaştırma Kongresi, İnşaat Mühendisleri Odası, Istanbul, Turkey, 2007.
- [2] T. H. Dickson, D. F. Dwyer and D. N. Humphrey, “Prototypes tire-shred embankment construction,” Transportation Research, Record 1755, TRB, National Research Council, Washington, D.C., USA, 2001, pp.160-167.
- [3] S. Yoon, M. Prezzi, N. Z. Siddiki and K. Bumjoo, “Construction of a test embankment using a sand-tire shred mixture as fill material,” Waste Management, vol. 26, no. 9, pp. 1033-1044, Dec. 2005.
- [4] S. U. Umu, “Kum – atık lastik karışımlarının lineer olmayan dinamik davranışı,” Ph D. dissertation, Civil Engineering Dept., Eskişehir Osmangazi Üniversitesi, Eskisehir, Turkey, 2013.
- [5] D. N. Humphrey, “Investigation of exothermic reaction in tire shred fill located on SR 100 in Ilwaco, Washington,” Consulting Report to FHWA, US Department of Transportation, 1996.
- [6] P. J. Bosscher, T.B. Edil and S. Kuraoka, “Design of highway embankments using tire chips,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, vol. 123, no. 4, pp. 295-304, Apr. 1997.
- [7] D. N. Humphrey and L. E. Katz, (2000), “Five year study of the effect of tire TDA placed above the water table on groundwater quality,” Transportation Research Record Journal of the Transportation Research Board, vol. 1714, no. 1, pp. 18-24, Jan. 2000.
- [8] J. G. Zornberg, A. R. Cabral and C. Viratjandr, “Behaviour of tire shred-sand mixtures,” Canadian Geotechnical Journal, vol. 41, no.2, pp. 227-241, Apr. 2004.
- [9] S. Akbulut, A. S. Hasiloglu and S. Pamukcu, “Data generation for shear modulus and damping ratio in reinforced sands using adaptive neuro-fuzzy inference system,” Soil Dynamics and Earthquake Engineering, vol. 24, no. 11, pp.805-814, July 2004.
- [10] K. Senetakis, A. Anastasiadis and K. Pitilakis, “Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes,” Soil Dynamics and Earthquake Engineering, vol. 33, no. 1, pp.38-53, Febr. 2012.
- [11] S. Keskin and M. Laman, “Atık lastik - kum karışımlarının kayma mukavemetinin laboratuvar deneyleriyle incelenmesi,” Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 27, no. 2, pp. 27-35, 2012.
- [12] S. U. Umu, D. V. Okur, G. Yılmaz and S. Fırat, “Dinamik yükleme şartlarında kum/lastik karışımlarının rijitlik ve sönüm özelliklerinin incelenmesi,” Politeknik Dergisi, vol. 17, no. 1, pp. 11-19, 2014.
- [13] Jr. F. E. Richart, Jr. J. R. Hall and R. D. Woods. Vibration of soils and foundations. New Jersey, USA: Prentice Hall Press, 1970.
- [14] G. Viggiani, “Dynamic measurements of small strain stiffness of fine grained soils in the triaxial apparatus,” Experimental Characterization and Modeling of Soils and Soft Rocks, Proceedings of the Workshop in Napoli, 1991, pp. 75-97.
- [15] P. De Alba, K. C. Baldwin, “Use of bender elements in soil dynamics experiments,” Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics, Geotechnical Special Publication, Proceedings of ASCE, vol. 12., no. 29, 1991, pp. 86-101.
- [16] J. Youn, Y. Choo, Y. and D. Kim, “Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column and torsional shear tests,” Canadian Geotechnical Journal, vol. 45, no. 10, pp. 1426-1438, Sept. 2008.
- [17] D. Wegener and I. Herle, “Investigation of shear strain amplitude induced by railroad traffic in soils,” Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California, USA, 2010.
- [18] Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, ASTM D854-14, West Conshohocken, PA, 2014.
- [19] Standard Test Methods for Modulus and Damping of Soils by Fixed-Base Resonant Column Devices, ASTM International, ASTM D4015-15e1, West Conshohocken, PA, 2015.
Stabilization of Railway Subbase by Shredded Tire Rubber - Sand Mixture
Year 2020,
, 34 - 42, 31.07.2020
Seyfettin Umut Umu
,
Derviş Volkan Okur
Abstract
The use of waste tires in civil engineering applications has become a major issue in recent years and has advantageous in terms of geotechnical engineering. The rubber wastes are lightweight materials that can be used as a filling material in embankments to overcome the stability and settlement problems in road constructions over weak soils. In this study, clean standard sand soil as the base material of railway infrastructure were mixed rubber dust, chips and amorphous piece samples obtained from waste tire in 5%, 10% and 15% by mass. Resonance Column (RC) tests were performed on the mixture samples. The aim is to investigate the shear modulus of artificially constructed railway infrastructure. The shear modulus of samples containing 5% dust waste rubber mixture is about 26% higher than the reference sample at 0,001% shear strain amplitude and 18% higher than the reference sample at 0,01% shear strain amplitude and 35% higher than the reference sample at 0,1% shear strain amplitude under 100 kPa effective pressure.
References
- [1] A. Erel, “Yüksek hızlı demiryollarında altyapının önemi ve tasarım ilkeleri,” 7. Ulaştırma Kongresi, İnşaat Mühendisleri Odası, Istanbul, Turkey, 2007.
- [2] T. H. Dickson, D. F. Dwyer and D. N. Humphrey, “Prototypes tire-shred embankment construction,” Transportation Research, Record 1755, TRB, National Research Council, Washington, D.C., USA, 2001, pp.160-167.
- [3] S. Yoon, M. Prezzi, N. Z. Siddiki and K. Bumjoo, “Construction of a test embankment using a sand-tire shred mixture as fill material,” Waste Management, vol. 26, no. 9, pp. 1033-1044, Dec. 2005.
- [4] S. U. Umu, “Kum – atık lastik karışımlarının lineer olmayan dinamik davranışı,” Ph D. dissertation, Civil Engineering Dept., Eskişehir Osmangazi Üniversitesi, Eskisehir, Turkey, 2013.
- [5] D. N. Humphrey, “Investigation of exothermic reaction in tire shred fill located on SR 100 in Ilwaco, Washington,” Consulting Report to FHWA, US Department of Transportation, 1996.
- [6] P. J. Bosscher, T.B. Edil and S. Kuraoka, “Design of highway embankments using tire chips,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, vol. 123, no. 4, pp. 295-304, Apr. 1997.
- [7] D. N. Humphrey and L. E. Katz, (2000), “Five year study of the effect of tire TDA placed above the water table on groundwater quality,” Transportation Research Record Journal of the Transportation Research Board, vol. 1714, no. 1, pp. 18-24, Jan. 2000.
- [8] J. G. Zornberg, A. R. Cabral and C. Viratjandr, “Behaviour of tire shred-sand mixtures,” Canadian Geotechnical Journal, vol. 41, no.2, pp. 227-241, Apr. 2004.
- [9] S. Akbulut, A. S. Hasiloglu and S. Pamukcu, “Data generation for shear modulus and damping ratio in reinforced sands using adaptive neuro-fuzzy inference system,” Soil Dynamics and Earthquake Engineering, vol. 24, no. 11, pp.805-814, July 2004.
- [10] K. Senetakis, A. Anastasiadis and K. Pitilakis, “Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes,” Soil Dynamics and Earthquake Engineering, vol. 33, no. 1, pp.38-53, Febr. 2012.
- [11] S. Keskin and M. Laman, “Atık lastik - kum karışımlarının kayma mukavemetinin laboratuvar deneyleriyle incelenmesi,” Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 27, no. 2, pp. 27-35, 2012.
- [12] S. U. Umu, D. V. Okur, G. Yılmaz and S. Fırat, “Dinamik yükleme şartlarında kum/lastik karışımlarının rijitlik ve sönüm özelliklerinin incelenmesi,” Politeknik Dergisi, vol. 17, no. 1, pp. 11-19, 2014.
- [13] Jr. F. E. Richart, Jr. J. R. Hall and R. D. Woods. Vibration of soils and foundations. New Jersey, USA: Prentice Hall Press, 1970.
- [14] G. Viggiani, “Dynamic measurements of small strain stiffness of fine grained soils in the triaxial apparatus,” Experimental Characterization and Modeling of Soils and Soft Rocks, Proceedings of the Workshop in Napoli, 1991, pp. 75-97.
- [15] P. De Alba, K. C. Baldwin, “Use of bender elements in soil dynamics experiments,” Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics, Geotechnical Special Publication, Proceedings of ASCE, vol. 12., no. 29, 1991, pp. 86-101.
- [16] J. Youn, Y. Choo, Y. and D. Kim, “Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column and torsional shear tests,” Canadian Geotechnical Journal, vol. 45, no. 10, pp. 1426-1438, Sept. 2008.
- [17] D. Wegener and I. Herle, “Investigation of shear strain amplitude induced by railroad traffic in soils,” Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California, USA, 2010.
- [18] Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, ASTM D854-14, West Conshohocken, PA, 2014.
- [19] Standard Test Methods for Modulus and Damping of Soils by Fixed-Base Resonant Column Devices, ASTM International, ASTM D4015-15e1, West Conshohocken, PA, 2015.