Research Article
BibTex RIS Cite

Lamine CFRP Donatılı Traverslerin Deneysel ve Sonlu Eleman Analizleriyle İncelenmesi

Year 2021, , 26 - 38, 31.07.2021
https://doi.org/10.47072/demiryolu.869946

Abstract

Günümüz demiryolu işletmeciliğinde artan hız ve aralıksız işletim koşulları sonucunda, daha düşük bakım gerektiren çözümler mecburiyet halini almıştır. Bu çalışmada, en önemli demiryolu yapı elemanlarından biri olan traversler ele alınmıştır. Klasik betonarme traverslerin literatürde geçen çeşitli sorunlarına değinildikten sonra bu sorunların kaynağında çözümlenmesi adına mevcut çelik donatılar yerine karbon fiber takviyeli polimerlerin (carbon fiber reinforced polymers, CFRP) kullanımı araştırılmıştır. CFRP donatı olarak da geleneksel dairesel donatı geometrisi yerine çok daha düşük maliyetli lamine form kullanılmıştır. Üretilen prototiplerde yapılan TS EN 13230-3 statik eğilme testleri ve detaylı ANSYS sonlu eleman analizlerine göre uzun ve verimli servis ömrü açısından oldukça olumlu sonuçlar elde edilmiştir.

Supporting Institution

Tübitak Ardeb Dairesi Başkanlığı

Project Number

120M403/2020

Thanks

Katkılarından dolayı TCDD Sivas Beton Travers Fabrikası Müdürü Sn. Ali KARABEY’e teşekkürlerimizi bildiririz

References

  • [1] J. Taherinezhad, M. Sofi, P. Mendis, T. Ngo, “Strain rates in prestressed concrete sleepers and effects on cracking loads,” Electronic Journal of Structural Engineering, vol. 17, no. 1, pp. 65-75, January 2017.
  • [2] A. Jokūbaıtıs, G. Marcˇiukaitis, J. Valivonis, “Influence of technological and environmental factors on the behavior of the reinforcement anchorage zone of prestressed concrete sleepers,” Construction and Building Materials, vol. 121, part C, pp. 507-518, September 2016, doi: http://dx.doi.org/10.1016/j.conbuildmat.2016.06.025
  • [3] ACI-ASCE Committee 423, “State-of-the-art report on partially prestressed concrete, ACI 423.5R-99,” 1999 [Online]. Avaliable: http://civilwares.free.fr/ACI/MCP04/4235r_99.pdf 1999.
  • [4] T. J. Barlo, A.D. Zdunek, “Stray current corrosion in electrified rail systems, northwestern university final report,” 1995 [Online]. Avaliable: https://rosap.ntl.bts.gov/view/dot/13213/dot_13213_DS1.pdf
  • [5] H. Isozaki, J. Oosawa, Y. Kawano, R. Hirasawa, S. Kubota, S. Konishi, “Measures against electrolytic rail corrosion in Tokyo metro subway tunnels,” Procedia Engineering, vol. 165, pp. 583 – 592, December 2016, doi: https://doi.org/10.1016/j.proeng.2016.11.754
  • [6] F. Çeçen, “Karbon – fiber donatıyla öngerilmesiz monoblok demiryolu beton traversi geliştirilmesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ulaştırma ABD, Gazi Osman Paşa Üniversitesi, Tokat, 2019.
  • [7] F. Çeçen, B. Aktaş, “Yeni nesil demiryolu traversleri ve yerli FRP donatı kullanımının deneysel araştırması,” Demiryolu Mühendisliği, vol. 13, pp. 53-64, January 2021, doi: https://doi.org/10.47072/demiryolu.803452
  • [8] K. D. Dalgıç, “Düşük elastisite modüllü cam lifli polimerle sargılanmış düşük dayanımlı betonun eksenel yükler altında davranışı ve sonlu eleman metodu ile analizi,” Yüksek Lisans Tezi, İnşaat Mühendisliği Anabilim Dalı, İstanbul Teknik Üniversitesi, İstanbul, 2010.
  • [9] M. R. Hammad, “Non‐linear finite element analysis of reinforced concrete beams strengthened with carbon fiber‐ reinforced polymer (CFRP) technique,” Master of Science Thesis, Civil Engineering Department, The Islamic University of Gaza, 2015.
  • [10] G. Camata, E. Spacone, R. Zarnic, ʺExperimental and nonlinear finite element studies of RC beams strengthened with FRP plates,ʺ Composites: Part B., vol. 38, pp. 277‐ 288, 2007.
  • [11] Budapest University of Technology and Economics, Department of Applied Mechanics, “Index of /~gyebro/files/ans_help_v182,” 2020. [Online]. Available: https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SOLID186.html [Accessed: 30.10.2020].
  • [12] A. J. Wolanski, “Flexural behavior of reinforced and prestressed concrete beams using finite element analysis,” Master of Science Thesis, Marquette University, Milwaukee, Wisconsin, 2004.
  • [13] İ. Ovalı, ANSYS Workbench, İstanbul, Kodlab Yayın Dağıtım Yazılım ve Eğitim Hizmetleri San. ve Tic. Ltd. Şti., 3. Baskı, ISBN 978-605-9118-89-7, 2018.
  • [14] M. Shayanfer, A. Kheyroddin, M. S. Mirza, “Element size effects in nonlinear analysis of reinforced concrete members,” Computers & Structures, vol. 62, no. 2, pp 339-352, 1997.
  • [15] F. Duchaine, H. Champliaud, “Structured mesh generation by kriging with local refinement with a new elliptic scheme‖,” Engineering with Computers, , vol. 23, no. 1, pp. 61-69, 2007.
  • [16] O. C. Zienkiewicz, R. L. Taylor, The finite element method for solid and structural mechanics, Butterworth-heinemann, ISBN: 9780080455587, 2005.
  • [17] K. Giannakos, “Damage of railway sleepers under dynamic loads: A case history from the Greek railway network,” Sixth International Conference on Case Histories in Geotechnical Engineering, Missouri University of Science and Technology, session 08-c, 2008, doi: http://scholarsmine.mst.edu/icchge/6icchge/session08c/5
  • [18] G. Tharmarajah, “Compressive membrane action in fibre reinforced polymer (FRP) reinforced concrete slabs,” PhD Thesis, Queen's University, Belfast, 2010.

Experimental and Finite Element Investigation of Laminated Carbon Fiber Reinforced Polymer Reinforced Railway Sleepers

Year 2021, , 26 - 38, 31.07.2021
https://doi.org/10.47072/demiryolu.869946

Abstract

In today's railway operations, as a result of increasing operating speeds and uninterrupted operating conditions, solutions that require less maintenance have become obligatory. In this study, sleepers, one of the most important railway building elements, are discussed. After presenting the various problems of conventional concrete sleepers mentioned in the literature, the use of carbon fiber reinforced polymers (CFRP) instead of existing steel reinforcements was investigated to solve these problems at the source. As CFRP reinforcement, a much lower cost laminated form is used instead of traditional circular reinforcement geometry. Static bending tests according to TS EN 13230-3 and detailed ANSYS finite element analysis were performed on the produced prototypes, and very positive results were obtained in terms of long and efficient service life.

Project Number

120M403/2020

References

  • [1] J. Taherinezhad, M. Sofi, P. Mendis, T. Ngo, “Strain rates in prestressed concrete sleepers and effects on cracking loads,” Electronic Journal of Structural Engineering, vol. 17, no. 1, pp. 65-75, January 2017.
  • [2] A. Jokūbaıtıs, G. Marcˇiukaitis, J. Valivonis, “Influence of technological and environmental factors on the behavior of the reinforcement anchorage zone of prestressed concrete sleepers,” Construction and Building Materials, vol. 121, part C, pp. 507-518, September 2016, doi: http://dx.doi.org/10.1016/j.conbuildmat.2016.06.025
  • [3] ACI-ASCE Committee 423, “State-of-the-art report on partially prestressed concrete, ACI 423.5R-99,” 1999 [Online]. Avaliable: http://civilwares.free.fr/ACI/MCP04/4235r_99.pdf 1999.
  • [4] T. J. Barlo, A.D. Zdunek, “Stray current corrosion in electrified rail systems, northwestern university final report,” 1995 [Online]. Avaliable: https://rosap.ntl.bts.gov/view/dot/13213/dot_13213_DS1.pdf
  • [5] H. Isozaki, J. Oosawa, Y. Kawano, R. Hirasawa, S. Kubota, S. Konishi, “Measures against electrolytic rail corrosion in Tokyo metro subway tunnels,” Procedia Engineering, vol. 165, pp. 583 – 592, December 2016, doi: https://doi.org/10.1016/j.proeng.2016.11.754
  • [6] F. Çeçen, “Karbon – fiber donatıyla öngerilmesiz monoblok demiryolu beton traversi geliştirilmesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ulaştırma ABD, Gazi Osman Paşa Üniversitesi, Tokat, 2019.
  • [7] F. Çeçen, B. Aktaş, “Yeni nesil demiryolu traversleri ve yerli FRP donatı kullanımının deneysel araştırması,” Demiryolu Mühendisliği, vol. 13, pp. 53-64, January 2021, doi: https://doi.org/10.47072/demiryolu.803452
  • [8] K. D. Dalgıç, “Düşük elastisite modüllü cam lifli polimerle sargılanmış düşük dayanımlı betonun eksenel yükler altında davranışı ve sonlu eleman metodu ile analizi,” Yüksek Lisans Tezi, İnşaat Mühendisliği Anabilim Dalı, İstanbul Teknik Üniversitesi, İstanbul, 2010.
  • [9] M. R. Hammad, “Non‐linear finite element analysis of reinforced concrete beams strengthened with carbon fiber‐ reinforced polymer (CFRP) technique,” Master of Science Thesis, Civil Engineering Department, The Islamic University of Gaza, 2015.
  • [10] G. Camata, E. Spacone, R. Zarnic, ʺExperimental and nonlinear finite element studies of RC beams strengthened with FRP plates,ʺ Composites: Part B., vol. 38, pp. 277‐ 288, 2007.
  • [11] Budapest University of Technology and Economics, Department of Applied Mechanics, “Index of /~gyebro/files/ans_help_v182,” 2020. [Online]. Available: https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SOLID186.html [Accessed: 30.10.2020].
  • [12] A. J. Wolanski, “Flexural behavior of reinforced and prestressed concrete beams using finite element analysis,” Master of Science Thesis, Marquette University, Milwaukee, Wisconsin, 2004.
  • [13] İ. Ovalı, ANSYS Workbench, İstanbul, Kodlab Yayın Dağıtım Yazılım ve Eğitim Hizmetleri San. ve Tic. Ltd. Şti., 3. Baskı, ISBN 978-605-9118-89-7, 2018.
  • [14] M. Shayanfer, A. Kheyroddin, M. S. Mirza, “Element size effects in nonlinear analysis of reinforced concrete members,” Computers & Structures, vol. 62, no. 2, pp 339-352, 1997.
  • [15] F. Duchaine, H. Champliaud, “Structured mesh generation by kriging with local refinement with a new elliptic scheme‖,” Engineering with Computers, , vol. 23, no. 1, pp. 61-69, 2007.
  • [16] O. C. Zienkiewicz, R. L. Taylor, The finite element method for solid and structural mechanics, Butterworth-heinemann, ISBN: 9780080455587, 2005.
  • [17] K. Giannakos, “Damage of railway sleepers under dynamic loads: A case history from the Greek railway network,” Sixth International Conference on Case Histories in Geotechnical Engineering, Missouri University of Science and Technology, session 08-c, 2008, doi: http://scholarsmine.mst.edu/icchge/6icchge/session08c/5
  • [18] G. Tharmarajah, “Compressive membrane action in fibre reinforced polymer (FRP) reinforced concrete slabs,” PhD Thesis, Queen's University, Belfast, 2010.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Building Technology, Environmentally Sustainable Engineering, Civil Engineering, Civil Construction Engineering, Composite and Hybrid Materials
Journal Section Article
Authors

Ferhat Çeçen 0000-0003-2100-8071

Bekir Aktaş 0000-0003-3072-7983

Project Number 120M403/2020
Publication Date July 31, 2021
Submission Date January 28, 2021
Published in Issue Year 2021

Cite

IEEE F. Çeçen and B. Aktaş, “Lamine CFRP Donatılı Traverslerin Deneysel ve Sonlu Eleman Analizleriyle İncelenmesi”, Demiryolu Mühendisliği, no. 14, pp. 26–38, July 2021, doi: 10.47072/demiryolu.869946.

Cited By