Research Article
BibTex RIS Cite

Methods Used in Tunnel Design (Empirical, Analytical and Numerical Methods), Limitations, Comparison and Suggestions

Year 2022, Issue: 15, 125 - 133, 31.01.2022
https://doi.org/10.47072/demiryolu.1030404

Abstract

Tunneling activities have increased rapidly in our country, which has recently focused on infrastructure works. Especially in High Speed Railway Projects, this situation has been seen more clearly due to the restrictions of the route. Excavations continue in High Speed Railway Projects between Ankara Istanbul, Bursa Yenişehir, Ankara Konya, Kars Tbilisi, Ankara Sivas and Ankara Izmir, which are among the major infrastructure projects in our country. Some of the tunnels in these sections have been completed and excavations are continuing in the others. The experiences gained from these big projects and the methods followed during the tunnel design will be explained within the scope of this study, and the limitations, advantages and disadvantages of the methods will be evaluated.

References

  • [1] K.V. Terzaghi, Rock defects and loads on tunnel supports. In: Proctor, R.V. and White, T.L., Eds., Rock Tunneling with Steel Supports, Commercial Shearing and Stamping Company, Youngstown,1946.
  • [2] D.U. Deere, “Technical description of rock cores for engineering purposes,” Rock Mechanics and Engineering Geology, 1, pp. 16-22, 1964.
  • [3] Z.T. Bieniawski, “Engineering classification of jointed rock masses,” Trans S. Afr. Inst. Civ. Engrs 15, 335-344. 1973.
  • [4] Z.T. Bieniawski, “Rock mass classification in rock engineering,” In Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97-106. Cape Town: Balkema. 1976.
  • [5] Z.T. Bieniawski, Engineering rock mass classifications. New York: Wiley. 1989.
  • [6] N.R. Barton, R. Lien, J. Lunde, “Engineering classification of rock masses for the design of tunnel support,” Rock Mech. 6(4), 189-239. 1974.
  • [7] N. R. Barton, F. Løset, R. Lien, J. Lunde, “Application of the Q-system in design decisions,” In Subsurface space, (ed. M. Bergman) 2, 553-561. New York: Pergamon.1981.
  • [8] N.Barton, “Application of Q-system and index tests to estimate shear strength and deformability of rock masses,” In Workshop on Norwegian Method of Tunnelling (pp. 66–84). New Delhi, India,1993
  • [9] L.v Rabcewicz, “The new austrian tunnelling method, Part One,” Water Power, pp 453–457, 1964.
  • [10] L.v. Rabcewicz, “The new austrian tunnelling method, Part Two,” Water Power, pp 511–515, 1964.
  • [11] L.v. Rabcewicz, “The new austrian tunnelling method, Part Three,” Water Power, pp 19–24, 1965.
  • [12] A.Palmstrom, “RMi—A system for characterizing rock mass strength for use in rock engineering,” Journal of Rock Mechanics and Tunnelling Technology, 1(2), 69–108. 1996.
  • [13] E. Hoek, E.T. Brown, Underground excavations in rocks (p. 527). Institution of Mining and Metallurgy. London: Maney Publishing, 1980.
  • [14] E. Hoek, E.T. Brown, “The Hoek-Brown failure criterion—A 1988 update,” In 15th Canadian Rock Mechanics Symposium (pp. 31–38). 1988.
  • [15] L.v. Rabcewicz, J. Golser, “Principles of dimensioning the supporting system for the “new austrian tunnelling method,” Water Power, Marc, 88-93. 1973.
  • [16] L. Müller, “Removing misconceptions on the new austrian tunnelling method,” Tunnels & Tunnelling International;10(8):29–32. 1978.
  • [17] H. Kastner, Static des tunnels und stollenbaues. Berlin/Gottingen:Springer 1962.
  • [18] E.G. Kirsch, “The theory if elasticity and the need of the strength of materials” (trans.). J Assoc German Eng, 1898;42:797–807, 1898.
  • [19] C. C. Torres, C. Fairhurst, “Application of the convergence–confinement method of tunnel design to rock masses that satisfy the Hoek–Brown failure criterion,” Tunn. Undergr. Space Technol. 15 (2), 18– 213.2000.
  • [20] E. Hoek, P.K. Kaiser, W.F. Bowden, Support of underground excavations in hard rock. A.A. Balkema, Rotterdam. 1995.
  • [21] X.F. Wang, B.S. Jiang, Q. Zhang, M.M. Lu, M. Chen, “Analytical solution of circular tunnel in elastic-viscoplastic rock mass,” Latin American Journal of Solids and Structures, 2019, 16(6), e210, 2019.
  • [22] A. Sakcali, H.Yavuz, “Estimation of radial deformations around circular tunnels in weak rock masses through numerical modelling,” International Journal of Rock Mechanics and Mining Sciences, 123, 104092. https://doi.org/10.1016/j.ijrmms.2019.104092, 2019.
  • [23] D.R.J. Owen, E. Hinton, Finite Elements in Plasticity. Pineridge Press, Swansea, p 589, 1980.
  • [24] M.Cai, “Influence of stress path on tunnel excavation response—numerical tool selection and modeling strategy,” Tunn Undergr Sp Technol 23(2008):618–628, 2008.
  • [25] M.E.F. Duncan, “Numerical modelling of yield zones in weak rocks,” In: Hudson JA (ed) Comprehensive rock engineering, vol 2. Pergamon, Oxford, pp 49–75,1993.
  • [26] R.W. Clough, “The finite element method in plane stress analysis.” In: Proceedings of the 2nd ASCE Conference on Electronic Computation, Pittsburgh, 1960.
  • [27] A Hrenikoff, Solution of problems in elasticity by the framework method. J. Appl. Mech. 1941; 8, 169-75.
  • [28] NM Newmark. Numerical Methods of Analysis in Engineering. In: LE Grinter (ed.). Macmillan, New York, 1949.
  • [29] Karayolları Genel Müdürlüğü, Karayolları Teknik Şartnamesi, 2013.

Tünel Projelendirilmesinde Kullanılan Yöntemler (Ampirik, Analitik ve Nümerik Yöntemler), Kısıtlamaları, Karşılaştırılması ve Öneriler

Year 2022, Issue: 15, 125 - 133, 31.01.2022
https://doi.org/10.47072/demiryolu.1030404

Abstract

Son dönemlerde altyapı çalışmalarına ağırlık verilmiş olan ülkemizde tünelcilik faaliyetleri çok hızlı bir şekilde artış göstermiştir. Özellikle Yüksek Hızlı Demiryolu Projelerinde güzergahın kısıtlamalarından dolayı tünel sayısının arttığı daha net görülmüştür. Ülkemizdeki büyük alt yapı projelerinden olan Ankara İstanbul, Bursa Yenişehir, Ankara Konya, Kars Tiflis, Ankara Sivas ve Ankara İzmir arası Yüksek Hızlı Tren Projelerinde kazı çalışmaları devam etmektedir. Bu kesimlerde yer alan tünellerden bir kısmı tamamlanmış olup diğerlerinde kazı çalışmaları devam etmektedir. Söz konusu büyük projelerden edinilen tecrübeler ile bu çalışmada kapsamında tünel projelendirilmesi sırasında takip edilen yöntemler anlatılarak yöntemlerdeki kısıtlamalar, avantajlar ve dezavantajlar değerlendirilecektir.

References

  • [1] K.V. Terzaghi, Rock defects and loads on tunnel supports. In: Proctor, R.V. and White, T.L., Eds., Rock Tunneling with Steel Supports, Commercial Shearing and Stamping Company, Youngstown,1946.
  • [2] D.U. Deere, “Technical description of rock cores for engineering purposes,” Rock Mechanics and Engineering Geology, 1, pp. 16-22, 1964.
  • [3] Z.T. Bieniawski, “Engineering classification of jointed rock masses,” Trans S. Afr. Inst. Civ. Engrs 15, 335-344. 1973.
  • [4] Z.T. Bieniawski, “Rock mass classification in rock engineering,” In Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97-106. Cape Town: Balkema. 1976.
  • [5] Z.T. Bieniawski, Engineering rock mass classifications. New York: Wiley. 1989.
  • [6] N.R. Barton, R. Lien, J. Lunde, “Engineering classification of rock masses for the design of tunnel support,” Rock Mech. 6(4), 189-239. 1974.
  • [7] N. R. Barton, F. Løset, R. Lien, J. Lunde, “Application of the Q-system in design decisions,” In Subsurface space, (ed. M. Bergman) 2, 553-561. New York: Pergamon.1981.
  • [8] N.Barton, “Application of Q-system and index tests to estimate shear strength and deformability of rock masses,” In Workshop on Norwegian Method of Tunnelling (pp. 66–84). New Delhi, India,1993
  • [9] L.v Rabcewicz, “The new austrian tunnelling method, Part One,” Water Power, pp 453–457, 1964.
  • [10] L.v. Rabcewicz, “The new austrian tunnelling method, Part Two,” Water Power, pp 511–515, 1964.
  • [11] L.v. Rabcewicz, “The new austrian tunnelling method, Part Three,” Water Power, pp 19–24, 1965.
  • [12] A.Palmstrom, “RMi—A system for characterizing rock mass strength for use in rock engineering,” Journal of Rock Mechanics and Tunnelling Technology, 1(2), 69–108. 1996.
  • [13] E. Hoek, E.T. Brown, Underground excavations in rocks (p. 527). Institution of Mining and Metallurgy. London: Maney Publishing, 1980.
  • [14] E. Hoek, E.T. Brown, “The Hoek-Brown failure criterion—A 1988 update,” In 15th Canadian Rock Mechanics Symposium (pp. 31–38). 1988.
  • [15] L.v. Rabcewicz, J. Golser, “Principles of dimensioning the supporting system for the “new austrian tunnelling method,” Water Power, Marc, 88-93. 1973.
  • [16] L. Müller, “Removing misconceptions on the new austrian tunnelling method,” Tunnels & Tunnelling International;10(8):29–32. 1978.
  • [17] H. Kastner, Static des tunnels und stollenbaues. Berlin/Gottingen:Springer 1962.
  • [18] E.G. Kirsch, “The theory if elasticity and the need of the strength of materials” (trans.). J Assoc German Eng, 1898;42:797–807, 1898.
  • [19] C. C. Torres, C. Fairhurst, “Application of the convergence–confinement method of tunnel design to rock masses that satisfy the Hoek–Brown failure criterion,” Tunn. Undergr. Space Technol. 15 (2), 18– 213.2000.
  • [20] E. Hoek, P.K. Kaiser, W.F. Bowden, Support of underground excavations in hard rock. A.A. Balkema, Rotterdam. 1995.
  • [21] X.F. Wang, B.S. Jiang, Q. Zhang, M.M. Lu, M. Chen, “Analytical solution of circular tunnel in elastic-viscoplastic rock mass,” Latin American Journal of Solids and Structures, 2019, 16(6), e210, 2019.
  • [22] A. Sakcali, H.Yavuz, “Estimation of radial deformations around circular tunnels in weak rock masses through numerical modelling,” International Journal of Rock Mechanics and Mining Sciences, 123, 104092. https://doi.org/10.1016/j.ijrmms.2019.104092, 2019.
  • [23] D.R.J. Owen, E. Hinton, Finite Elements in Plasticity. Pineridge Press, Swansea, p 589, 1980.
  • [24] M.Cai, “Influence of stress path on tunnel excavation response—numerical tool selection and modeling strategy,” Tunn Undergr Sp Technol 23(2008):618–628, 2008.
  • [25] M.E.F. Duncan, “Numerical modelling of yield zones in weak rocks,” In: Hudson JA (ed) Comprehensive rock engineering, vol 2. Pergamon, Oxford, pp 49–75,1993.
  • [26] R.W. Clough, “The finite element method in plane stress analysis.” In: Proceedings of the 2nd ASCE Conference on Electronic Computation, Pittsburgh, 1960.
  • [27] A Hrenikoff, Solution of problems in elasticity by the framework method. J. Appl. Mech. 1941; 8, 169-75.
  • [28] NM Newmark. Numerical Methods of Analysis in Engineering. In: LE Grinter (ed.). Macmillan, New York, 1949.
  • [29] Karayolları Genel Müdürlüğü, Karayolları Teknik Şartnamesi, 2013.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects General Geology
Journal Section Article
Authors

Ebu Bekir Aygar 0000-0002-5738-4602

Publication Date January 31, 2022
Submission Date November 30, 2021
Published in Issue Year 2022 Issue: 15

Cite

IEEE E. B. Aygar, “Tünel Projelendirilmesinde Kullanılan Yöntemler (Ampirik, Analitik ve Nümerik Yöntemler), Kısıtlamaları, Karşılaştırılması ve Öneriler”, Demiryolu Mühendisliği, no. 15, pp. 125–133, January 2022, doi: 10.47072/demiryolu.1030404.