Research Article
BibTex RIS Cite

Metro İstasyonu Tasarımlarının Normal İşletme ve Acil Durum Tahliye Senaryoları Açısından 3 Boyutlu Simülasyon Teknolojisi ile Değerlendirilmesi

Year 2022, Issue: 16, 51 - 65, 31.07.2022
https://doi.org/10.47072/demiryolu.1105491

Abstract

Yaya simülasyonu teknolojilerinin mimarlık ve şehir planlama disiplinlerinde kullanımı yeni bir kavram olmamakla birlikte; makine öğrenmesi tabanlı, insan davranışlarına benzer sonuçlar veren, ajan bazlı, gerçekçiliği ve geçerliliği bilimsel olarak ispatlanmış üç boyutlu simülasyon yazılımları son yıllarda ortaya çıkmışlardır. Bu yazılımlar, özellikle kalabalık ve karmaşık mekanlarda ortaya çıkabilecek sirkülasyon ve acil durum tahliye problemlerinin henüz tasarım aşamasındayken görülmesine olanak sağlamakta; bu sayede yapı inşa edilmeden önce projede gerekli revizyonların gerçekleştirilmesine imkan vermektedir. Ulusal ve uluslararası standartlar doğrultusunda gerçekleştirilen bu çalışmanın amacı, güncel simülasyon teknolojilerinin yapılara ilişkin normal işletme ve acil durum tahliye senaryolarının değerlendirilmesinde kullanımını örnek olarak seçilen gerçek bir metro istasyonu projesi üzerinden incelemektir. Seçilen raylı sistem hattındaki istasyona özgü yolcu yüklerinin bulunması amacıyla klasik elle hesaplama yöntemleri kullanılmış, ortaya çıkan değerler Massmotion yazılımına aktarılarak mekânsal kapasite analizleri gerçekleştirilmiş ve istasyonun tüm katlarına ilişkin hizmet seviyeleri bulunmuştur. Sonuç olarak metro istasyonunun normal işletme ve acil durum tahliye senaryolarının gereksinimlerini karşılayıp karşılamayacağı test edilmiş, ortaya çıkan sonuçlar çalışma kapsamında verilmiştir.

References

  • [1] J. M. Joshua, “Urbanization,” 2014. [Online]. Available: https://www.worldhistory.org/urbanization/ [Accessed: 18-Apr-2022].
  • [2] Britannica, “Urbanization - Impact of the industrial revolution,” 2021. [Online]. Available: https://www.britannica.com/topic/urbanization/Impact-of-the-Industrial-Revolution. [Accessed: 16-Apr-2022].
  • [3] Türkiye İstatistik Kurumu, “Adrese dayalı nüfus kayıt sistemi sonuçları,” 2021. [Online]. Available: https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2021-45500. [Accessed: 15-Apr-2022].
  • [4] C. Shi, M. Zhong, X. Nong, L. He, J. Shi ve G. Feng, “Modeling and safety strategy of passenger evacuation in a metro station in China,” Saf. Sci., vol. 50, pp. 1319-1332, 2012.
  • [5] F. Gültekin, “İstanbul Büyükşehir Belediyesi Metro İstanbul A.Ş.,” 2022. [Online]. Available: www.linkedin.com/feed/update/urn:li:activity:6916702672972607488/. [Accessed: 11-Apr-2022].
  • [6] P. Clifford, “Passenger simulation modelling in station planning and design,” Wit. Trans. Built. Env. Computers in Railways, vol. 18, pp. 229-237, 1996.
  • [7] Z. Li, S. M. Lo, J. Ma ve X. W. Luo, “A study on passengers’ alighting and boarding process at metro platform by computer simulation,” Transp. Res. Part A Policy Pract., vol. 132, pp. 840-854, 2020.
  • [8] S. Seriani ve R. Fernandez, “Pedestrian traffic management of boarding and alighting in metro stations,” Transp. Res. Part C Emerging Technol., vol. 53, pp. 76-92, 2015.
  • [9] C. Zhang, B. Han, Y. Wang ve W. Zhou, “Pedestrian gathering and evacuating simulation and facilities optimized analysis of Wangfujing Station of Beijing Metro,” Appl. Mech. Mater., vol. 744-746, pp. 2094-2097, 2015.
  • [10] H. Yin, J. Wu, Z. Liu, X. Yang, Y. Qu ve H. Sun, “Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation,” Appl. Math. Model., vol. 72, pp. 337-355, 2019.
  • [11] M. Zhong, C. Shi, X. Tu, T. Fu ve L. He, “Study of the human evacuation simulation of metro fire safety analysis in China,” J. Loss. Prev. Process. Ind., vol. 21, pp. 287-298, 2008.
  • [12] A. Kallianiotis, D. Papakonstantinou, V. Arvelaki ve A. Benardos, “Evaluation of evacuation methods in underground metro stations,” Int. J. Disaster Risk Reduct., vol. 31, pp. 526-534, 2018.
  • [13] F. Li, S. Chen, X. Wang ve F. Feng, “Pedestrian evacuation modeling and simulation on metro platforms considering panic Impacts,” Procedia Soc. Behav. Sci., vol. 138, pp. 314-322, 2014.
  • [14] B. C. K. Siong, B. C. J. Jun ve K. S. Yen, “Evacuation simulation modeling for a deep underground subway station,” Fire and Evacuation Modeling Technical Conference, 2020.
  • [15] E. D. Özdamar, “Yeraltı metro istasyonlarında pasif yangın güvenlik önlemleri: tahliye sürecinin incelenmesi ve bir örneklem,” Gazi Üniversitesi Fen Bilimleri Enstitüsü Mimarlık ABD Yüksek Lisans Tezi, Ankara, 2020.
  • [16] G. Koç ve Ö. C. Ceylan, “Metro istasyon ve tünellerinin acil durum havalandırmasında yeni yaklaşımlar ve uygulama esasları,” 11. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 2013.
  • [17] C. Kırlangıçoğlu ve M. F. Döker, “Şehir planlama ve mimari tasarım sürecinde yaya simülasyonu teknolojilerinin kullanımı,” International Journal of Human Sciences, vol. 15, no. 3, 2018.
  • [18] G. B. Türkölmez ve M. Güneş, “Metro servis sistemlerinde acil tahliye modelleri: İzmir metro uygulaması,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 22, no. 4, pp. 324-339, 2016.
  • [19] NetworkRail, “Station capacity assessment guidance,” 2011. [Online]. Available: https://www.networkrail.co.uk/wp-content/uploads/2021/06/NR_GN_CIV_100_02_Station-Design.pdf. [Accessed: 19-Apr-2022].
  • [20] E. M. Cepolina, F. Menichini ve P. G. Rojas, “Level of service of pedestrian facilities: modelling human comfort perception in the evaluation of pedestrian behaviour patterns,” Transp. Res. Part. F Traffic Psychol. Behav., vol. 58, pp. 365-381, 2018.
  • [21] J. J. Fruin, Pedestrian planning and design, New York: Metropolitan Association of Urban Designers and Environmental Planners, 1971.
  • [22] A. Azadpeyma ve E. Kashi, “Level of service analysis for metro station with transit cooperative research program (TCRP) manual: a case study—Shohada Station in Iran,” Urban Rail Transit, vol. 5, pp. 39-47, 2019, doi: 10.1007/s40864-018-0098-0.
  • [23] E. Bonabeau, “Agent-based modeling: methods and techniques for simulating human systems,” Proceedings of the National Academy of Sciences, vol. 99, pp. 7280-7287, 2002.
  • [24] T. Richards, “A review of software for crowd simulation,” 2021. [Online]. Available: https://urban-analytics.github.io/dust/docs/ped_sim_review.pdf. [Accessed: 10-Apr-2022].
  • [25] M. Mashhadawi, “Massmotion evacuation model validation,” 2016. [Online]. Available: https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8875378&fileOId=8875380. [Accessed: 14-Apr-2022].
  • [26] D. O’Donnell, T. Roberts ve P. Debney, “Massmotion – a step in the right direction,” 2013. [Online]. Available:https://www.oasys-software.com/wp-content/uploads/2018/09/MassMotion-%E2%80%93-A-Step-In-The-Right-Direction-Interflam-2013.pdf. [Accessed: 16-Apr-2022].
  • [27] Arup, “The verification and validation of MassMotion for evacuation modelling,” 2015. [Online]. Available:https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8875378&fileOId=8875380. [Accessed: 17-Apr-2022].
  • [28] D. Helbing ve P. Molnar, “Social force model for pedestrian dynamics,” Phys. Rev. E, vol. 51, pp. 4282-4286, 1995, doi: 10.1103/PhysRevE.51.4282.
  • [29] NFPA Standard for fixed guideway transit and passenger rail systems, NFPA 130, National Fire Protection Association, 2019.
  • [30] B. O'Connor, “Means of egress with NFPA 130,” 2021. [Online]. Available: https://www.nfpa.org/News-and-Research/Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-Posts/2021/08/27/Means-of-Egress-with-NFPA-130#. [Accessed: 18-Apr-2022].

Evaluation of Metro Station Design in Terms of Normal Operation and Emergency Evacuation Scenarios with 3D Simulation Software

Year 2022, Issue: 16, 51 - 65, 31.07.2022
https://doi.org/10.47072/demiryolu.1105491

Abstract

Although the use of pedestrian simulation technologies in architecture and urban planning disciplines is not a new concept; the use of 3D simulation software based on machine learning, which gives results similar to human behavior, which is agent-based and of which validity has been scientifically proven, have emerged in recent years. This kind of software allows seeing circulation and emergency evacuation problems that may arise in crowded and complex spaces while still in the design phase. This way, it allows the necessary revisions to be made in the project before the construction begins. The aim of this study, which is carried out in line with national and international standards, is to examine the use of current simulation technologies in the evaluation of normal operation and emergency evacuation scenarios related to buildings through an actual metro station project selected as an example. In order to find station-specific passenger loads on the chosen rail system line, classical manual calculation methods were used, spatial capacity analyzes were carried out by transferring the resulting values to the Massmotion software, and service levels for all floors of the station were found. As a result, it was tested whether the selected metro station would meet the requirements of regular operation and emergency evacuation scenarios or not, and the results were given within the scope of the study.

References

  • [1] J. M. Joshua, “Urbanization,” 2014. [Online]. Available: https://www.worldhistory.org/urbanization/ [Accessed: 18-Apr-2022].
  • [2] Britannica, “Urbanization - Impact of the industrial revolution,” 2021. [Online]. Available: https://www.britannica.com/topic/urbanization/Impact-of-the-Industrial-Revolution. [Accessed: 16-Apr-2022].
  • [3] Türkiye İstatistik Kurumu, “Adrese dayalı nüfus kayıt sistemi sonuçları,” 2021. [Online]. Available: https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2021-45500. [Accessed: 15-Apr-2022].
  • [4] C. Shi, M. Zhong, X. Nong, L. He, J. Shi ve G. Feng, “Modeling and safety strategy of passenger evacuation in a metro station in China,” Saf. Sci., vol. 50, pp. 1319-1332, 2012.
  • [5] F. Gültekin, “İstanbul Büyükşehir Belediyesi Metro İstanbul A.Ş.,” 2022. [Online]. Available: www.linkedin.com/feed/update/urn:li:activity:6916702672972607488/. [Accessed: 11-Apr-2022].
  • [6] P. Clifford, “Passenger simulation modelling in station planning and design,” Wit. Trans. Built. Env. Computers in Railways, vol. 18, pp. 229-237, 1996.
  • [7] Z. Li, S. M. Lo, J. Ma ve X. W. Luo, “A study on passengers’ alighting and boarding process at metro platform by computer simulation,” Transp. Res. Part A Policy Pract., vol. 132, pp. 840-854, 2020.
  • [8] S. Seriani ve R. Fernandez, “Pedestrian traffic management of boarding and alighting in metro stations,” Transp. Res. Part C Emerging Technol., vol. 53, pp. 76-92, 2015.
  • [9] C. Zhang, B. Han, Y. Wang ve W. Zhou, “Pedestrian gathering and evacuating simulation and facilities optimized analysis of Wangfujing Station of Beijing Metro,” Appl. Mech. Mater., vol. 744-746, pp. 2094-2097, 2015.
  • [10] H. Yin, J. Wu, Z. Liu, X. Yang, Y. Qu ve H. Sun, “Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation,” Appl. Math. Model., vol. 72, pp. 337-355, 2019.
  • [11] M. Zhong, C. Shi, X. Tu, T. Fu ve L. He, “Study of the human evacuation simulation of metro fire safety analysis in China,” J. Loss. Prev. Process. Ind., vol. 21, pp. 287-298, 2008.
  • [12] A. Kallianiotis, D. Papakonstantinou, V. Arvelaki ve A. Benardos, “Evaluation of evacuation methods in underground metro stations,” Int. J. Disaster Risk Reduct., vol. 31, pp. 526-534, 2018.
  • [13] F. Li, S. Chen, X. Wang ve F. Feng, “Pedestrian evacuation modeling and simulation on metro platforms considering panic Impacts,” Procedia Soc. Behav. Sci., vol. 138, pp. 314-322, 2014.
  • [14] B. C. K. Siong, B. C. J. Jun ve K. S. Yen, “Evacuation simulation modeling for a deep underground subway station,” Fire and Evacuation Modeling Technical Conference, 2020.
  • [15] E. D. Özdamar, “Yeraltı metro istasyonlarında pasif yangın güvenlik önlemleri: tahliye sürecinin incelenmesi ve bir örneklem,” Gazi Üniversitesi Fen Bilimleri Enstitüsü Mimarlık ABD Yüksek Lisans Tezi, Ankara, 2020.
  • [16] G. Koç ve Ö. C. Ceylan, “Metro istasyon ve tünellerinin acil durum havalandırmasında yeni yaklaşımlar ve uygulama esasları,” 11. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 2013.
  • [17] C. Kırlangıçoğlu ve M. F. Döker, “Şehir planlama ve mimari tasarım sürecinde yaya simülasyonu teknolojilerinin kullanımı,” International Journal of Human Sciences, vol. 15, no. 3, 2018.
  • [18] G. B. Türkölmez ve M. Güneş, “Metro servis sistemlerinde acil tahliye modelleri: İzmir metro uygulaması,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 22, no. 4, pp. 324-339, 2016.
  • [19] NetworkRail, “Station capacity assessment guidance,” 2011. [Online]. Available: https://www.networkrail.co.uk/wp-content/uploads/2021/06/NR_GN_CIV_100_02_Station-Design.pdf. [Accessed: 19-Apr-2022].
  • [20] E. M. Cepolina, F. Menichini ve P. G. Rojas, “Level of service of pedestrian facilities: modelling human comfort perception in the evaluation of pedestrian behaviour patterns,” Transp. Res. Part. F Traffic Psychol. Behav., vol. 58, pp. 365-381, 2018.
  • [21] J. J. Fruin, Pedestrian planning and design, New York: Metropolitan Association of Urban Designers and Environmental Planners, 1971.
  • [22] A. Azadpeyma ve E. Kashi, “Level of service analysis for metro station with transit cooperative research program (TCRP) manual: a case study—Shohada Station in Iran,” Urban Rail Transit, vol. 5, pp. 39-47, 2019, doi: 10.1007/s40864-018-0098-0.
  • [23] E. Bonabeau, “Agent-based modeling: methods and techniques for simulating human systems,” Proceedings of the National Academy of Sciences, vol. 99, pp. 7280-7287, 2002.
  • [24] T. Richards, “A review of software for crowd simulation,” 2021. [Online]. Available: https://urban-analytics.github.io/dust/docs/ped_sim_review.pdf. [Accessed: 10-Apr-2022].
  • [25] M. Mashhadawi, “Massmotion evacuation model validation,” 2016. [Online]. Available: https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8875378&fileOId=8875380. [Accessed: 14-Apr-2022].
  • [26] D. O’Donnell, T. Roberts ve P. Debney, “Massmotion – a step in the right direction,” 2013. [Online]. Available:https://www.oasys-software.com/wp-content/uploads/2018/09/MassMotion-%E2%80%93-A-Step-In-The-Right-Direction-Interflam-2013.pdf. [Accessed: 16-Apr-2022].
  • [27] Arup, “The verification and validation of MassMotion for evacuation modelling,” 2015. [Online]. Available:https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8875378&fileOId=8875380. [Accessed: 17-Apr-2022].
  • [28] D. Helbing ve P. Molnar, “Social force model for pedestrian dynamics,” Phys. Rev. E, vol. 51, pp. 4282-4286, 1995, doi: 10.1103/PhysRevE.51.4282.
  • [29] NFPA Standard for fixed guideway transit and passenger rail systems, NFPA 130, National Fire Protection Association, 2019.
  • [30] B. O'Connor, “Means of egress with NFPA 130,” 2021. [Online]. Available: https://www.nfpa.org/News-and-Research/Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-Posts/2021/08/27/Means-of-Egress-with-NFPA-130#. [Accessed: 18-Apr-2022].
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Article
Authors

Cem Kırlangıçoğlu 0000-0002-5998-9496

Publication Date July 31, 2022
Submission Date April 18, 2022
Published in Issue Year 2022 Issue: 16

Cite

IEEE C. Kırlangıçoğlu, “Metro İstasyonu Tasarımlarının Normal İşletme ve Acil Durum Tahliye Senaryoları Açısından 3 Boyutlu Simülasyon Teknolojisi ile Değerlendirilmesi”, Demiryolu Mühendisliği, no. 16, pp. 51–65, July 2022, doi: 10.47072/demiryolu.1105491.