Detection of Insulator Faults in Catenary Systems with Deep Learning
Year 2022,
Issue: 16, 185 - 195, 31.07.2022
Gülşah Karaduman
,
Erhan Akın
,
Berkan Binay
,
Miraç Dilekli
Abstract
Insulators are the most important components of catenary systems in electrified railway lines. Fractures or burns in insulators cause interruptions in transportation. These interruptions also prevent safe operation, especially on high-speed rail lines. Detecting faults in insulators at an early stage will enable to intervene in catenary systems at the most appropriate time and prevent insulator-related accidents. In this article, a deep learning-based method is proposed to classify insulators in catenary systems as faulty or intact. A data set containing 1100 isolator images was used in the study. The images in this dataset are trained and tested with the ResNet34 deep learning architecture. With the proposed architecture, faults in isolators are classified with 95,7% accuracy, 99% precision and 96,6% recall values. These values show that the performed study is a reliable method for fault detection in isolators in catenary systems.
References
- [1] P. Tan, X. F. Li, X. J. M. Xu, J. E. Ma, F. J. Wang, J. Ding, Y. Ning, “Catenary insulator defect detection based on contour features and gray similarity matching”. Journal of Zhejiang University-Scıence A, vol. 21, no.1, pp. 64-73, 2020, doi: 10.1631/jzus.A1900341.
- [2] Elektrikci, “Elektrik Tesislerinde İzolatörler” 2022 [Online]. Available: https://www.elektrikce.com/elektrik-tesislerinde-izolatorler/ [21.07.2022].
- [3] Y. Han, Z. Liu, D. J. Lee, W. Liu, J. Chen, & Z. Han, “Computer vision–based automatic rod-insulator defect detection in high-speed railway catenary system”. International Journal of Advanced Robotic Systems, vol. 15, no.3, pp.1-15, 2018, doi: 10.1177/1729881418773943.
- [4] T. Kumar, “ResNet-34” 2022 [Online]. Available: https://www.kaggle.com/datasets/pytorch/resnet34 [21.07.2022].
- [5] P. Fan, H. M. Shen, C. Zhao, Z. Wei, J. G. Yao, Z. Q. Zhou, Q. Hu, ” Defect identification detection research for insulator of transmission lines based on deep learning”. In Journal of Physics: Conference Series, vol. 1828, No. 1, pp. 1-7 IOP Publishing, February, 2021, doi:10.1088/1742-6596/1828/1/012019.
- [6] V. Mehlomakulu, T. Magadza, “Transmission line isolator fault detection based on deep learning and UAV imageries”, International Journal of Science and Research (IJSR), vol.11, no.2, pp. 1028-1035, February 2022, doi: 10.21275/SR22216013540.
- [7] Q. Wen, Z. Luo, R. Chen, Y. Yang, & G. Li, “Deep learning approaches on defect detection in high resolution aerial images of insulators”. Sensors, vol. 21, no.4, pp.1-24, 2021, doi:10.3390/s21041033.
- [8] C. Sampedro, J. Rodriguez-Vazquez, A. Rodriguez-Ramos, A. Carrio, & P. Campoy, “Deep learning-based system for automatic recognition and diagnosis of electrical insulator strings”. IEEE Access, vol. 7, pp.101283-101308, 2019, doi: 10.1109/ACCESS.2019.2931144.
- [9] M. P. Corso, F. L. Perez, S. F. Stefenon, K. C. Yow, R. García Ovejero, & V. R. Q. Leithardt, “Classification of contaminated insulators using k-nearest neighbors based on computer vision”. Computers, vol. 10, no. 9, pp. 1-18, 2021, doi: 10.3390/computers10090112.
- [10] C. Liu, Y. Wu, J. Liu, Z. Sun, & H. Xu, “Insulator Faults Detection in Aerial Images from High-Voltage Transmission Lines Based on Deep Learning Model”. Applied Sciences, vol. 11, no. 10, pp. 1-20, 2021, doi: 10.3390/app11104647.
- [11] T. Li, J. Zhou, G. Song, Y. Wen, Y. Ye, & S. Chen, “Insulator Infrared Image Segmentation Algorithm Based on Dynamic Mask and Box Annotation”. 11th International Conference on Power and Energy Systems (ICPES) , China, 2021, pp. 432-435.
- [12] Z. Zhao, G. Xu, & Y. Qi, “Representation of binary feature pooling for detection of insulator strings in infrared images”. IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 5, pp. 2858-2866, 2016, 10.1109/TDEI.2016.7736846.
- [13] E. Güçlü, İ. Aydın and E. Akın , "DCGAN ve Siyam Sinir Ağını Kullanarak Demiryolu Bağlantı Elemanlarındaki Kusurların Tespiti", Demiryolu Mühendisliği, no. 15, pp. 46-59, Jan. 2022, doi:10.47072/demiryolu.1015962.
- [14] T. Li, T Hao, “Damage Detection of Insulators in Catenary Based on Deep Learning and Zernike Moment Algorithms”, Applied Sciences, vol. 12, no. 10, pp. 1-16, 2022, doi: 10.3390/app12105004.
- [15] G. Han, M. He, M. Gao, J. Yu, K. Liu, L. Qin, “Insulator breakage detection based on improved YOLOv5”. Sustainability, vol. 14, no. 10, pp. 1-17, 2022, doi:10.3390/su14106066.
- [16] G. Karaduman, M. Karakose, I. Aydin, E. Akin, “Contactless rail profile measurement and rail fault diagnosis approach using featured pixel counting”, Intellıgent Automatıon And Soft Computıng, vol. 26, no. 3, pp. 455–463, 2020, doi:10.32604/iasc.2020.013922.
Katener Sistemlerindeki İzolatör Kusurlarının Derin Öğrenme ile Tespiti
Year 2022,
Issue: 16, 185 - 195, 31.07.2022
Gülşah Karaduman
,
Erhan Akın
,
Berkan Binay
,
Miraç Dilekli
Abstract
İzolatörler elektrikli demiryolu hatlarında katener sistemlerin en önemli bileşenleridir. İzolatörlerde meydana gelen kırıklar veya yanmalar ulaşımda kesintilere neden olmaktadır. Bu kesintiler de özellikle yüksek hızlı ray hatlarında güvenli çalışmayı engeller. İzolatörlerdeki arızaların erken bir aşamada tespit edilmesi katener sistemlerine en uygun zamanda müdahale etmeyi ve izolatör kaynaklı kazaları engellemeyi sağlayacaktır. Bu makalede katener sistemlerindeki izolatörleri arızalı ya da sağlam olarak sınıflandırmak için derin öğrenme tabanlı bir yöntem önerilmektedir. Çalışmada 1100 adet izolatör görüntüsü içeren bir veri seti kullanılmıştır. Bu veri setindeki görüntüler ResNet34 derin öğrenme mimarisi ile eğitilmiş ve test edilmiştir. Önerilen mimari ile izolatörlerdeki arızalar %95,7 doğruluk, %99 kesinlik ve %96,6 duyarlılık değerleriyle sınıflandırılmıştır. Bu değerler gerçekleştirilen çalışmanın katener sistemlerindeki izolatörlerdeki arıza tespiti için güvenilir bir yöntem olduğunu göstermektedir.
References
- [1] P. Tan, X. F. Li, X. J. M. Xu, J. E. Ma, F. J. Wang, J. Ding, Y. Ning, “Catenary insulator defect detection based on contour features and gray similarity matching”. Journal of Zhejiang University-Scıence A, vol. 21, no.1, pp. 64-73, 2020, doi: 10.1631/jzus.A1900341.
- [2] Elektrikci, “Elektrik Tesislerinde İzolatörler” 2022 [Online]. Available: https://www.elektrikce.com/elektrik-tesislerinde-izolatorler/ [21.07.2022].
- [3] Y. Han, Z. Liu, D. J. Lee, W. Liu, J. Chen, & Z. Han, “Computer vision–based automatic rod-insulator defect detection in high-speed railway catenary system”. International Journal of Advanced Robotic Systems, vol. 15, no.3, pp.1-15, 2018, doi: 10.1177/1729881418773943.
- [4] T. Kumar, “ResNet-34” 2022 [Online]. Available: https://www.kaggle.com/datasets/pytorch/resnet34 [21.07.2022].
- [5] P. Fan, H. M. Shen, C. Zhao, Z. Wei, J. G. Yao, Z. Q. Zhou, Q. Hu, ” Defect identification detection research for insulator of transmission lines based on deep learning”. In Journal of Physics: Conference Series, vol. 1828, No. 1, pp. 1-7 IOP Publishing, February, 2021, doi:10.1088/1742-6596/1828/1/012019.
- [6] V. Mehlomakulu, T. Magadza, “Transmission line isolator fault detection based on deep learning and UAV imageries”, International Journal of Science and Research (IJSR), vol.11, no.2, pp. 1028-1035, February 2022, doi: 10.21275/SR22216013540.
- [7] Q. Wen, Z. Luo, R. Chen, Y. Yang, & G. Li, “Deep learning approaches on defect detection in high resolution aerial images of insulators”. Sensors, vol. 21, no.4, pp.1-24, 2021, doi:10.3390/s21041033.
- [8] C. Sampedro, J. Rodriguez-Vazquez, A. Rodriguez-Ramos, A. Carrio, & P. Campoy, “Deep learning-based system for automatic recognition and diagnosis of electrical insulator strings”. IEEE Access, vol. 7, pp.101283-101308, 2019, doi: 10.1109/ACCESS.2019.2931144.
- [9] M. P. Corso, F. L. Perez, S. F. Stefenon, K. C. Yow, R. García Ovejero, & V. R. Q. Leithardt, “Classification of contaminated insulators using k-nearest neighbors based on computer vision”. Computers, vol. 10, no. 9, pp. 1-18, 2021, doi: 10.3390/computers10090112.
- [10] C. Liu, Y. Wu, J. Liu, Z. Sun, & H. Xu, “Insulator Faults Detection in Aerial Images from High-Voltage Transmission Lines Based on Deep Learning Model”. Applied Sciences, vol. 11, no. 10, pp. 1-20, 2021, doi: 10.3390/app11104647.
- [11] T. Li, J. Zhou, G. Song, Y. Wen, Y. Ye, & S. Chen, “Insulator Infrared Image Segmentation Algorithm Based on Dynamic Mask and Box Annotation”. 11th International Conference on Power and Energy Systems (ICPES) , China, 2021, pp. 432-435.
- [12] Z. Zhao, G. Xu, & Y. Qi, “Representation of binary feature pooling for detection of insulator strings in infrared images”. IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 5, pp. 2858-2866, 2016, 10.1109/TDEI.2016.7736846.
- [13] E. Güçlü, İ. Aydın and E. Akın , "DCGAN ve Siyam Sinir Ağını Kullanarak Demiryolu Bağlantı Elemanlarındaki Kusurların Tespiti", Demiryolu Mühendisliği, no. 15, pp. 46-59, Jan. 2022, doi:10.47072/demiryolu.1015962.
- [14] T. Li, T Hao, “Damage Detection of Insulators in Catenary Based on Deep Learning and Zernike Moment Algorithms”, Applied Sciences, vol. 12, no. 10, pp. 1-16, 2022, doi: 10.3390/app12105004.
- [15] G. Han, M. He, M. Gao, J. Yu, K. Liu, L. Qin, “Insulator breakage detection based on improved YOLOv5”. Sustainability, vol. 14, no. 10, pp. 1-17, 2022, doi:10.3390/su14106066.
- [16] G. Karaduman, M. Karakose, I. Aydin, E. Akin, “Contactless rail profile measurement and rail fault diagnosis approach using featured pixel counting”, Intellıgent Automatıon And Soft Computıng, vol. 26, no. 3, pp. 455–463, 2020, doi:10.32604/iasc.2020.013922.