Research Article
BibTex RIS Cite

Raylı Sistem Araçlarında Yüksek Hızlı Yük Taşımacılığı İçin Düz Yol ve Kurp Şartları İçin Araç Tekerlek Bileşeninin Gerilme Analizi

Year 2023, Issue: 18, 109 - 120, 31.07.2023
https://doi.org/10.47072/demiryolu.1290599

Abstract

Yüksek hızlı tren işletmeciliği için yolcu taşımacılığı son yıllarda ülkemizde hızla yaygınlaşmaktadır. Dünyada yüksek hızlı tren işletmeciliği yapılan bazı ülkeler bu hatlarda yüksek tonajlı kargo yüklerini yüksek hız ile taşımaktadır. Artırılmış aks ve tekerlek yükleri, yüke, frenleme koşullarına ve hıza bağlı oluşan diğer dinamik etkiler demiryolu araç tekerleklerinin tasarımında zorlukluklar oluşturmaktadır. Buna göre yüksek hız ve artırılmış kargo yükleri altında tekerlek bileşeninin gerilme ve yerdeğiştirme durumlarının analizi güvenli işletmecilik açısından önemlidir. Bu kapsamda bu çalışmada dinamik yüklerin yanısıra, yüksek hızlı yük taşımacılığı koşulları altında oluşan dinamik yük, hız ve frenleme parametreleri altında demiryolu tekerleklerinin gerilme analizi düz yol ve dar kurplu işletme şartları için sonlu elemanlar yöntemi kullanılarak simüle edilmiştir. Yapılan analizler sonucu tekerleklerde oluşan gerilme değerlerinin malzemenin akma sınırının üzerinde olduğu ve olası yük taşımacılığında, yeni sistemlerde mukavemeti yüksek alternatif malzemelerin kullanılması gerekliliği sonucuna varılmıştır.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] L. Ramanan, R. K. Kumar, and R. Sriraman, “Thermo-mechanical finite element analysis of a rail wheel,” Int. J. Mech. Sci., vol. 41, no. 4–5, pp. 487–505, 1999, doi: 10.1016/s0020-7403(98)00078-2.
  • [2] E. Kabo and A. Ekberg, “Fatigue initiation in railway wheels - A numerical study of the influence,” Wear, vol. 253, no. 1–2, pp. 26–34, 2002, doi: 10.1016/S0043-1648(02)00079-0.
  • [3] M. Kráčalík, G. Trummer, and W. Daves, “Application of 2D finite element analysis to compare cracking behaviour in twin-disc tests and full scale wheel/rail experiments,” Wear, vol. 346–347, pp. 140–147, 2016, doi: 10.1016/j.wear.2015.11.013.
  • [4] H. M. El-sayed, H. N. Zohny, H. S. Riad, and M. N. Fayed, “A three-dimensional finite element analysis of concrete sleepers and fastening systems subjected to coupling vertical and lateral loads,” Eng. Fail. Anal., vol. 122, no. September 2020, p. 105236, 2021, doi: 10.1016/j.engfailanal.2021.105236.
  • [5] R. Masoudi Nejad, K. Farhangdoost, and M. Shariati, “Numerical study on fatigue crack growth in railway wheels under the influence of residual stresses,” Eng. Fail. Anal., vol. 52, pp. 75–89, 2015, doi: 10.1016/j.engfailanal.2015.03.002.
  • [6] J. W. Seo, S. J. Kwon, H. K. Jun, and D. H. Lee, “Effects of residual stress and shape of web plate on the fatigue life of railway wheels,” Eng. Fail. Anal., vol. 16, no. 7, pp. 2493–2507, 2009, doi: 10.1016/j.engfailanal.2009.04.013.
  • [7] M. A. Arslan and O. Kayabaşi, “3-D Rail-Wheel contact analysis using FEA,” Adv. Eng. Softw., vol. 45, no. 1, pp. 325–331, 2012, doi: 10.1016/j.advengsoft.2011.10.009.
  • [8] Y. Liu, B. Stratman, and S. Mahadevan, “Fatigue crack initiation life prediction of railroad wheels,” Int. J. Fatigue, vol. 28, no. 7, pp. 747–756, 2006, doi: 10.1016/j.ijfatigue.2005.09.007.
  • [9] R. Masoudi Nejad, “Using three-dimensional finite element analysis for simulation of residual stresses in railway wheels,” Eng. Fail. Anal., vol. 45, pp. 449–455, 2014, doi: 10.1016/j.engfailanal.2014.07.018.
  • [10] M. Toumi, H. Chollet, and H. Yin, “Finite element analysis of the frictional wheel-rail rolling contact using explicit and implicit methods,” Wear, vol. 366–367, pp. 157–166, 2016, doi: 10.1016/j.wear.2016.06.008.
  • [11] L. Han, L. Jing, and L. Zhao, “Finite element analysis of the wheel–rail impact behavior induced by a wheel flat for high-speed trains: The influence of strain rate,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 232, no. 4, pp. 990–1004, 2018, doi: 10.1177/0954409717704790.
  • [12] X. Zhou, L. Jing, and X. Ma, “Dynamic finite element simulation of wheel–rail contact response for the straight track case,” Adv. Struct. Eng., vol. 24, no. 5, pp. 856–869, 2021, doi: 10.1177/1369433220971733.
  • [13] M. A. Che Zulkifli, K. S. Basaruddin, M. Afendi, W. H. Tan, and E. M. Cheng, “Finite Element Simulation on Railway Wheels under Various Loading,” IOP Conf. Ser. Mater. Sci. Eng., vol. 429, no. 1, 2018, doi: 10.1088/1757-899X/429/1/012002.
  • [14] L. Xin, V. L. Markine, and I. Y. Shevtsov, “Numerical analysis of the dynamic interaction between wheel set and turnout crossing using the explicit finite element method,” Veh. Syst. Dyn., vol. 54, no. 3, pp. 301–327, 2016, doi: 10.1080/00423114.2015.1136424.
  • [15] A. B. Rezende et al., “Wear behavior of bainitic and pearlitic microstructures from microalloyed railway wheel steel,” Wear, vol. 456–457, no. January, p. 203377, 2020, doi: 10.1016/j.wear.2020.203377.
  • [16] M. R. Zhang and H. C. Gu, “Microstructure and properties of carbide free bainite railway wheels produced by programmed quenching,” Mater. Sci. Technol., vol. 23, no. 8, pp. 970–974, 2007, doi: 10.1179/174328407X192831.
  • [17] B. Gao et al., “Accelerated Isothermal Phase Transformation and Enhanced Mechanical Properties of Railway Wheel Steel: The Significant Role of Pre-Existing Bainite,” Steel Res. Int., vol. 93, no. 2, pp. 1–11, 2022, doi: 10.1002/srin.202100494.
  • [18] Y. Sarikavak, “Wheel Rail Interaction; a Finite Element Analysis on Fatigue Failure Resistance of Pearlitic and Bainitic Steels,” Railw. Eng., no. 14, pp. 65–76, 2021, doi: 10.47072/demiryolu.934471.
  • [19] M. Boehm, M. Arnz, and J. Winter, “The potential of high-speed rail freight in Europe: how is a modal shift from road to rail possible for low-density high value cargo?,” Eur. Transp. Res. Rev., vol. 13, no. 1, 2021, doi: 10.1186/s12544-020-00453-3.
  • [20] E. C. Martínez, “Maintenance management and maintenance processes in railway operators: Case studies,” Barcelona, 2016.
  • [21] A. Ghidini, M. Diener, A. Gianni, and J. Schneider, Innovative steel by Lucchini RS for high-speed wheel application.
  • [22] L. Boussalia and A. Bellaouar, “Numerical simulation of the tread defects’ form impact on the eigen frequencies of a railway wheel,” UPB Sci. Bull. Ser. D Mech. Eng., vol. 80, no. 2, pp. 63–74, 2018.
  • [23] E. Norm, “EN 13979-1; Railway applications - Wheelsets and bogies - Monobloc Wheels - Technical approval procedure - Part 1: Forged and rolled wheels,” 2006.
  • [24] EN 13674-1, “Railway applications - Track - Rail - Part 1: Vignole railway rails 46 kg/m and above applications,” 2013.
  • [25] Y. Sarikavak, “Demiryollarında Ön Germeli Traverslerin Farklı İşletme Yükleri Altında Mekanik Analizi,” Demiryolu Mühendisliği, no. 13, pp. 115–121, 2021, doi: 10.47072/demiryolu.832641.
  • [26] D. Plotkin, “Carrying freight on high-speed rail lines,” J. Transp. Eng., vol. 123, no. 3, pp. 199–201, 1997, doi: 10.1061/(ASCE)0733-947X(1997)123:3(199).
  • [27] G. Troche, “High-speed rail freight - Efficient train systems for freight transport,” KTH Railway Group Report 0512, Stockholm, 2005.
  • [28] S. D. Iwnicki, S. Stichel, A. Orlova, and M. Hecht, “Dynamics of railway freight vehicles,” Veh. Syst. Dyn., vol. 53, no. 7, pp. 995–1033, 2015, doi: 10.1080/00423114.2015.1037773.
  • [29] G. Deng, Y. Peng, and C. Yan, “Running safety evaluation of a 350 km / h high-speed freight train negotiating a curve based on the arbitrary Lagrangian-Eulerian method,” 2021, doi: 10.1177/0954409720986283.

Stress Analysis of Vehicle Wheel Component of Rail System Vehicles for Plain and Curved Rail Cases in High-Speed Freight Transport

Year 2023, Issue: 18, 109 - 120, 31.07.2023
https://doi.org/10.47072/demiryolu.1290599

Abstract

In recent years high-speed train operation in passenger transportation has become widespread in Türkiye. Some countries that operate high-speed trains in the world transport high-tonnage cargo loads with higher speeds on these lines. Increased speeds, axle and wheel loads results with extra load, harsh braking conditions and other dynamic effects that creates difficulties in the design of railway vehicle wheels. Accordingly, the analysis of the stress and displacement conditions of the wheel component under high speed and increased freight loads is important for safe operation. In this context, in this study, stress analysis of railway wheels was simulated using the finite element method under load, speed and braking parameters specifically for high speed freight transport conditions for plain and narrow curved road conditions as well as other dynamic loads. As a result it was concluded that the stress values formed in the wheels are above the yield limit of the material and it is necessary to use alternative materials with high strength for next generation systems inpossible high-speed freight transportation.

Project Number

-

References

  • [1] L. Ramanan, R. K. Kumar, and R. Sriraman, “Thermo-mechanical finite element analysis of a rail wheel,” Int. J. Mech. Sci., vol. 41, no. 4–5, pp. 487–505, 1999, doi: 10.1016/s0020-7403(98)00078-2.
  • [2] E. Kabo and A. Ekberg, “Fatigue initiation in railway wheels - A numerical study of the influence,” Wear, vol. 253, no. 1–2, pp. 26–34, 2002, doi: 10.1016/S0043-1648(02)00079-0.
  • [3] M. Kráčalík, G. Trummer, and W. Daves, “Application of 2D finite element analysis to compare cracking behaviour in twin-disc tests and full scale wheel/rail experiments,” Wear, vol. 346–347, pp. 140–147, 2016, doi: 10.1016/j.wear.2015.11.013.
  • [4] H. M. El-sayed, H. N. Zohny, H. S. Riad, and M. N. Fayed, “A three-dimensional finite element analysis of concrete sleepers and fastening systems subjected to coupling vertical and lateral loads,” Eng. Fail. Anal., vol. 122, no. September 2020, p. 105236, 2021, doi: 10.1016/j.engfailanal.2021.105236.
  • [5] R. Masoudi Nejad, K. Farhangdoost, and M. Shariati, “Numerical study on fatigue crack growth in railway wheels under the influence of residual stresses,” Eng. Fail. Anal., vol. 52, pp. 75–89, 2015, doi: 10.1016/j.engfailanal.2015.03.002.
  • [6] J. W. Seo, S. J. Kwon, H. K. Jun, and D. H. Lee, “Effects of residual stress and shape of web plate on the fatigue life of railway wheels,” Eng. Fail. Anal., vol. 16, no. 7, pp. 2493–2507, 2009, doi: 10.1016/j.engfailanal.2009.04.013.
  • [7] M. A. Arslan and O. Kayabaşi, “3-D Rail-Wheel contact analysis using FEA,” Adv. Eng. Softw., vol. 45, no. 1, pp. 325–331, 2012, doi: 10.1016/j.advengsoft.2011.10.009.
  • [8] Y. Liu, B. Stratman, and S. Mahadevan, “Fatigue crack initiation life prediction of railroad wheels,” Int. J. Fatigue, vol. 28, no. 7, pp. 747–756, 2006, doi: 10.1016/j.ijfatigue.2005.09.007.
  • [9] R. Masoudi Nejad, “Using three-dimensional finite element analysis for simulation of residual stresses in railway wheels,” Eng. Fail. Anal., vol. 45, pp. 449–455, 2014, doi: 10.1016/j.engfailanal.2014.07.018.
  • [10] M. Toumi, H. Chollet, and H. Yin, “Finite element analysis of the frictional wheel-rail rolling contact using explicit and implicit methods,” Wear, vol. 366–367, pp. 157–166, 2016, doi: 10.1016/j.wear.2016.06.008.
  • [11] L. Han, L. Jing, and L. Zhao, “Finite element analysis of the wheel–rail impact behavior induced by a wheel flat for high-speed trains: The influence of strain rate,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 232, no. 4, pp. 990–1004, 2018, doi: 10.1177/0954409717704790.
  • [12] X. Zhou, L. Jing, and X. Ma, “Dynamic finite element simulation of wheel–rail contact response for the straight track case,” Adv. Struct. Eng., vol. 24, no. 5, pp. 856–869, 2021, doi: 10.1177/1369433220971733.
  • [13] M. A. Che Zulkifli, K. S. Basaruddin, M. Afendi, W. H. Tan, and E. M. Cheng, “Finite Element Simulation on Railway Wheels under Various Loading,” IOP Conf. Ser. Mater. Sci. Eng., vol. 429, no. 1, 2018, doi: 10.1088/1757-899X/429/1/012002.
  • [14] L. Xin, V. L. Markine, and I. Y. Shevtsov, “Numerical analysis of the dynamic interaction between wheel set and turnout crossing using the explicit finite element method,” Veh. Syst. Dyn., vol. 54, no. 3, pp. 301–327, 2016, doi: 10.1080/00423114.2015.1136424.
  • [15] A. B. Rezende et al., “Wear behavior of bainitic and pearlitic microstructures from microalloyed railway wheel steel,” Wear, vol. 456–457, no. January, p. 203377, 2020, doi: 10.1016/j.wear.2020.203377.
  • [16] M. R. Zhang and H. C. Gu, “Microstructure and properties of carbide free bainite railway wheels produced by programmed quenching,” Mater. Sci. Technol., vol. 23, no. 8, pp. 970–974, 2007, doi: 10.1179/174328407X192831.
  • [17] B. Gao et al., “Accelerated Isothermal Phase Transformation and Enhanced Mechanical Properties of Railway Wheel Steel: The Significant Role of Pre-Existing Bainite,” Steel Res. Int., vol. 93, no. 2, pp. 1–11, 2022, doi: 10.1002/srin.202100494.
  • [18] Y. Sarikavak, “Wheel Rail Interaction; a Finite Element Analysis on Fatigue Failure Resistance of Pearlitic and Bainitic Steels,” Railw. Eng., no. 14, pp. 65–76, 2021, doi: 10.47072/demiryolu.934471.
  • [19] M. Boehm, M. Arnz, and J. Winter, “The potential of high-speed rail freight in Europe: how is a modal shift from road to rail possible for low-density high value cargo?,” Eur. Transp. Res. Rev., vol. 13, no. 1, 2021, doi: 10.1186/s12544-020-00453-3.
  • [20] E. C. Martínez, “Maintenance management and maintenance processes in railway operators: Case studies,” Barcelona, 2016.
  • [21] A. Ghidini, M. Diener, A. Gianni, and J. Schneider, Innovative steel by Lucchini RS for high-speed wheel application.
  • [22] L. Boussalia and A. Bellaouar, “Numerical simulation of the tread defects’ form impact on the eigen frequencies of a railway wheel,” UPB Sci. Bull. Ser. D Mech. Eng., vol. 80, no. 2, pp. 63–74, 2018.
  • [23] E. Norm, “EN 13979-1; Railway applications - Wheelsets and bogies - Monobloc Wheels - Technical approval procedure - Part 1: Forged and rolled wheels,” 2006.
  • [24] EN 13674-1, “Railway applications - Track - Rail - Part 1: Vignole railway rails 46 kg/m and above applications,” 2013.
  • [25] Y. Sarikavak, “Demiryollarında Ön Germeli Traverslerin Farklı İşletme Yükleri Altında Mekanik Analizi,” Demiryolu Mühendisliği, no. 13, pp. 115–121, 2021, doi: 10.47072/demiryolu.832641.
  • [26] D. Plotkin, “Carrying freight on high-speed rail lines,” J. Transp. Eng., vol. 123, no. 3, pp. 199–201, 1997, doi: 10.1061/(ASCE)0733-947X(1997)123:3(199).
  • [27] G. Troche, “High-speed rail freight - Efficient train systems for freight transport,” KTH Railway Group Report 0512, Stockholm, 2005.
  • [28] S. D. Iwnicki, S. Stichel, A. Orlova, and M. Hecht, “Dynamics of railway freight vehicles,” Veh. Syst. Dyn., vol. 53, no. 7, pp. 995–1033, 2015, doi: 10.1080/00423114.2015.1037773.
  • [29] G. Deng, Y. Peng, and C. Yan, “Running safety evaluation of a 350 km / h high-speed freight train negotiating a curve based on the arbitrary Lagrangian-Eulerian method,” 2021, doi: 10.1177/0954409720986283.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Article
Authors

Yasin Sarıkavak 0000-0002-3573-6179

Project Number -
Publication Date July 31, 2023
Submission Date May 1, 2023
Published in Issue Year 2023 Issue: 18

Cite

IEEE Y. Sarıkavak, “Raylı Sistem Araçlarında Yüksek Hızlı Yük Taşımacılığı İçin Düz Yol ve Kurp Şartları İçin Araç Tekerlek Bileşeninin Gerilme Analizi”, Demiryolu Mühendisliği, no. 18, pp. 109–120, July 2023, doi: 10.47072/demiryolu.1290599.