Research Article
BibTex RIS Cite

Demiryollarında Araç Kaynaklı Yol Yüklerinin Belirlenmesi İçin Ölçüme Dayalı Hesaplamalı Bir Yöntemin Geliştirilmesi ve Simülasyon Ortamında Analizi

Year 2025, Issue: 21, 39 - 60, 31.01.2025
https://doi.org/10.47072/demiryolu.1525811

Abstract

Demiryolu taşıtlarının hareketi sırasında, taşıtın hızı, kütlesi, tekerlek, ray ve yol geometrisi, sürtünme katsayısı gibi parametrelerin etkisiyle tekerlek-ray temas bölgesinde raylara dinamik bir etki oluşmaktadır. Raya yanal ve düşey yönde etkiyen bu kuvvetler rayı tasarım geometrisinden sapmaya zorlar ve derayman riski doğurur. Özellikle kurplarda meydana gelen yanal kuvvetler deraymanın en büyük sebeplerindendir. Bu nedenle raylara etkiyen tekerlek kuvvetlerinin anlık olarak takip edilebilmesi özellikle demiryollarını ilk hizmete alırken oldukça önemlidir. Ayrıca, demiryollarında zamanla yaşanan deformasyonlar nedeniyle ortaya çıkabilecek deraymanın önüne geçmek için yol bakım çalışmalarının zamanında yapılması hayati öneme sahiptir. Doğru ve etkin bakım çalışması yapabilmek için de raya etkiyen kuvvetlerin periyodik olarak izlenmesi önemlidir. Bu çalışmada, raya etkiyen yanal ve düşey kuvvetlerin anlık olarak belirlenebilmesi için, araç üzerinden yapılacak çeşitli ölçümlerle elde edilecek verilerin çeşitli hesaplamalarla işlenerek kullanıldığı yeni bir yöntem geliştirilmiştir. Bu yöntemde kullanılacak hesaplama denklemleri Newton’un ikinci yasası kullanılarak elde edilmiştir. Denklemin içerisinde işlenecek değişkenler ise süspansiyon sapmaları, boji gövdesi ve tekerlek seti ivmeleri gibi anlık değişen parametrelerdir. Araç üzerinde ölçülen bu ve benzeri verilerin denklemlerde kullanılması sonucu raya etkiyen yanal ve düşey kuvvetlerin belirlenmesi hedeflenmiştir. Saha testleri öncesinde oluşturulan metodun doğruluğunu araştırmak için profesyonel projelerde ve akademide yaygın olarak kullanılan SIMPACK çoklu gövdeli dinamik simülasyon yazılımında aynı araç ve yol modeli oluşturulmuştur. Aynı zamanda, analitik metotla geliştirilen dinamik denklemler MATLAB/Simulink programında modellenmiştir. Her iki model (analitik ve sayısal) ile yapılan eş simülasyonlar sonucunda elde edilen düşey ve yanal tekerlek temas kuvvet çıktıları, geliştirilen denklemlerin tutarlı olup olmadığını görmek amacıyla karşılaştırılmıştır. Simülasyonlarda taşıtın 60 km/sa hızla düz yolda ilerlediği ve aynı hızla 200 metre yarıçaplı 14 cm dever yüksekliğe sahip bir kurptan geçtiği varsayılmıştır. Her iki modelden elde edilen simülasyon çıktıları karşılaştırıldığında, düz yolda yanal ve düşey tekerlek temas kuvvetlerinin %99’un üzerinde, kurpta ise yanal tekerlek temas kuvvetinin %94’ün ve düşey tekerlek temas kuvvetlerinin de %97’in üzerinde tutarlı sonuçlar elde edildiği görülmüştür. Ayrıca, geliştirilen denklemlerin içerisinde kullanılan değişkenlerin saha ölçümlerinde araç üzerinden ölçülebilecek nitelikte olduğu ortaya konmuştur. Bu bakımdan, literatüre şehir içi demiryolu hatlarında araçlardan raylara etkiyen kuvvetlerin anlık olarak izlenebilmesini sağlayan uygulanabilir bir yöntem kazandırılmıştır.

Ethical Statement

Bu makalede bilimsel araştırma ve yayın etiğine uyulmuştur. Yazarların katkıları: Nihat BULDUK: Kavramsallaştırma, Metodoloji, Doğrulama, Kaynaklar, Görselleştirme, Yazma-orijinal taslak hazırlama. Muzaffer METİN: Metodoloji, Gözden geçirme ve düzenleme, kontrol. Onat MARABAOĞLU: Simpack Modelleme, simülasyon ve analizleri.

Supporting Institution

TÜBİTAK

Project Number

222M001

Thanks

Bu çalışma, TÜBİTAK 1001 projesi kapsamında 222M001 numaralı proje desteği ile gerçekleştirilmiştir.

References

  • [1] A. Uğur, “Investigation of the world railway sector development prospects and Turkey's status,” Alphanumeric Journal, vol. 7, no. 2, pp. 369-398, Dec. 2019, doi: 10.17093/alphanumeric.582290
  • [2] A. Bracciali, and P. Folgarait, “New sensor for lateral & vertical wheel-rail forces measurements,” 2008
  • [3] D. Cortis, S. Giulianelli, G. Malavasi, and S. Rossi, “Self-diagnosis method for checking the wayside systems for wheel-rail vertical load measurement,” Transport Problems, vol. 12, no. 4, pp. 91-100, Dec. 2017, doi: 10.20858/tp.2017.12.4.9
  • [4] P. Zhang, J. Moraal, and Z. Li, “Design, calibration and validation of a wheel-rail contact force measurement system in v-track,” Measurement, vol. 175, Apr. 2021, 109105, doi: 10.1016/j.measurement.2021.109105
  • [5] P. Antunes, H. Magalhães, J. A. C. Ambrósio, J. Pombo, and J. N. Costa, “A co-simulation approach to the wheel–rail contact with flexible railway track,” Multibody System Dynamics, vol. 45, no. 4, pp. 245-272, Oct. 2018, doi: 10.1007/s11044-018-09646-0
  • [6] Y. Ren, and J. Chen, “A new method for wheel–rail contact force continuous measurement using instrumented wheelset,” Vehicle System Dynamics, vol. 57, no. 2, pp. 269-285, Apr. 2017, doi: 10.1080/00423114.2018.1460853
  • [7] D. Younesian, F. Javid, and E. Esmailzadeh, “On-track measurement of lateral/vertical wheel loads of running railway vehicles based on the neural network,” Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition, vol. 17, no. 6, pp. 467-471, Jan. 2008, doi: 10.1115/IMECE2008-68201
  • [8] M. B. Bižić, D. Z. Petrović, M. C. Tomić, and Z. V. Djinović, “Development of method for experimental determination of wheel–rail contact forces and contact point position by using instrumented wheelset,” Measurement Science and Technolgy, vol. 28, no. 7, Jun. 2017, doi: 10.1088/1361-6501/aa666f
  • [9] P. Gullers, L. Andersson, and R. Lunden, “High-frequency vertical wheel–rail contact forces-field measurements and influence of track irregularities,” Wear, vol. 265, no. 9-10, pp. 1472-1478, Oct. 2008, doi: 10.1016/j.wear.2008.02.035
  • [10] R. Gupta, and P. K. Bharti, “Evaluation of wheel load & lateral forces, using lateral & vertical force measurement wheel in dynamic condition at rail wheel contact point,” International Journal of Engineering Research and Technology, vol. 4, no. 4, pp. 894-902, Apr. 2015, doi: 10.17577/IJERTV4IS041168
  • [11] T. Hondo, S. Kuniyuki, T. Tanaka, M. Suzuki, and H. Doi, “Measurement of wheel-rail lateral force using shear strain of wheel web in railway vehicle (Comparison with a conventional bending based method under wheel rotating condition),” Transactions of the JSME, vol. 87, no. 903, pp. 1-12, Nov. 2021, doi: 10.1299/transjsme.21-00253
  • [12] V. R. Bagheri, P. H. Tehrani and D. Younesian, “Optimal strain gauge placement in instrumented wheelset for measuring wheel-rail contact forces,” International Journal of Precision Engineering and Manufacturing, vol. 18, pp. 1519-1527, Nov. 2017, doi: 10.1007/s12541-017-0180-7
  • [13] V. R. Bagheri, D. Younesian and P. H. Tehrani, “A new methodology for the estimation of wheel–rail contact forces at a high-frequency range,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 232, no. 10, pp. 2353-2370, Apr. 2018, doi: 10.1177/0954409718771746
  • [14] P. Urda, S. Muñoz, J. F. Aceituno, and J. L. Escalona, “Wheel-rail contact force measurement using strain gauges and distance lasers on a scaled railway vehicle,” Mechanical Systems and Signal Processing, vol. 138, Apr. 2020, doi: 10.1016/j.ymssp.2019.106555
  • [15] T. Hondo, S. Kuniyuki, T. Tanaka, and M. Suzuki, “Method for measuring lateral force utilizing shear strains inside wheel load measuring holes of instrumented wheelset,” Quarterly Report of RTRI, vol. 63, no. 2, pp. 139-144, May. 2022, doi: 10.2219/rtriqr.63.2_139
  • [16] M. Bižić, and D. Petrović, “Design of instrumented wheelset for measuring wheel-rail interaction forces,” Metrology and Measurement Systems, vol. 30, no. 3, pp. 563-579, 2023, doi: 10.24425/mms.2023.146424
  • [17] J. Kalivoda, and P. Bauer, “Measurement of wheel-rail contact forces at the experimental roller rig,” EAN 2019, Jun. 2019.
  • [18] L. Wei, J. Zeng, P. Wu, and C. Song,, “Safety analysis of high speed trains under cross winds using indirect wheel-rail force measuring method,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 183, pp. 55-67, Dec. 2018, doi: 10.1016/j.jweia.2018.10.018
  • [19] T. Zhu, X. Wang, Y. Fan, M. Wang, J. Zhang, S. Xiao, G. Yang, and B. Yang, “A time domain method for wheel-rail force identification of rail vehicles,” International Journal of Vehicle Mechanics and Mobility, vol. 60, no. 3, pp. 790-809, Sep. 2022, doi: 10.1080/00423114.2020.1838562
  • [20] F. Xia, C. Cole, and P. Wolfs, “An inverse railway wagon model and its applications,” Vehicle System Dynamics, vol. 45, no. 6, pp. 583-605, May. 2007, doi: 10.1080/00423110601079151
  • [21] T. Zhu, S. N. Xiao, Y. Guangwu, W. Ma, and Z. Zhang, “The inverse identification theory and application to high-speed trains,” Journal of Computational and Theoretical Nanoscience, vol. 19, no. 6, pp. 1582-1586, Jun. 2013, doi: 10.1166/asl.2013.4572
  • [22] T. Zhu, S. N. Xiao, Y. Guangwu, W. Ma, and Z. Zhang, “An inverse dynamics method for railway vehicle systems,” Transport, vol. 29, no. 1, pp. 107-114, Mar. 2014, doi: 10.3846/16484142.2013.789979
  • [23] C. Li, W. Liu, and R. Liang, “Identification of vertical wheel-rail contact force based on an analytical model and measurement and its application in predicting ground-borne vibration,” Measurement, vol. 186, Dec. 2021, doi: 10.1016/j.measurement.2021.110182
  • [24] K. Mal, I. Hussain, K. Shaikh, T. Memon, B. S. Chowdhry, K. Nisar, and M. Gupta, “A new estimation of nonlinear contact forces of railway vehicle,” Intelligent Automation&Soft Computing, vol. 28, no. 3, pp. 823-841, Apr. 2021, doi: 10.32604/iasc.2021.016990
  • [25] A. Zhao, J. Huang, and J. Sun, “Estimation of wheel–rail structural interactions from motion signals of high-speed train bogie,” International Journal of Dynamics and Control, vol. 11, pp. 1609-1620, Nov. 2022, doi: 10.1007/s40435-022-01085-2
  • [26] X. Xu, S. Sun, L. Niu, Z. Ke, F. Yang, and X. Xiong, “An approach for the estimation of vertical wheel/rail force using dynamic signals,” Vehicle System Dynamics, vol. 62, no. 6, pp. 1-15, May. 2023, doi: 10.1080/00423114.2023.2214256
  • [27] A. C. Pires, G. R. Mendes, G. F. M. Santos, A. P. C. Dias, and A. A. Santos, “Indirect identification of wheel rail contact forces of an instrumented heavy haul railway vehicle using machine learning,” Mechanical Systems and Signal Processing, vol. 160, Nov. 2021, doi: 10.1016/j.ymssp.2021.107806
  • [28] A. Matsumoto vd., “A new measuring method of wheel–rail contact forces and related considerations,” Wear, vol. 265, no. 9-10, pp. 1518-1525, Oct. 2008, doi: 10.1016/j.wear.2008.02.031
  • [29] A. Matsumoto vd., “Actual states of wheel/rail contact forces and friction on sharp curves - continuous monitoring from in-service trains and numerical simulations,” Wear, vol. 314, no. 1-2, pp. 189-197, Jun. 2014, doi: 10.1016/j.wear.2013.11.046
  • [30] A. Kataori, K. Doi, H. Iijima, S. Momosaki, and K. Horioka, “Development of continous measurement equipment for angle of attack and results of measurements,” East Japan Railway Culture Foundation, no. 19, pp. 46-49, May. 2012
  • [31] N. Bosso, and N. Zampieri, “A novel analytical method to calculate wheel-rail tangential forces and validation on a scaled roller-rig,” Advances in Tribology, vol. 2018, no. 1, pp. 1-11, Aug. 2018, doi: 10.1155/2018/7298236
  • [32] Y. C. Cheng, S. Y. Lee, and H. H. Chen, “Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks,” Journal of Sound and Vibration, vol. 324, no. 1-2, pp. 139-160, Jul. 2009, doi: 10.1016/j.jsv.2009.01.053
  • [33] J. Zeng, L. Wei, and P. Wu, “Safety evaluation for railway vehicles using an improved indirect measurement method of wheel–rail forces,” Journal of Modern Transportation, vol. 24, pp. 114-123, May. 2016, doi: 10.1007/s40534-016-0107-5
  • [34] L. Wei, J. Zeng, P. Wu, and H. Gao, “Indirect method for wheel–rail force measurement and derailment evaluation,” International Journal of Vehicle Mechanics and Mobility, vol. 52, no. 12, pp. 1622-1641, Sep. 2014, doi: 10.1080/00423114.2014.953180
  • [35] V.K. Garg, and R.V. Dukkipati, Dynamics of railway vehicle systems. Orlando, Academic Press, 1984
  • [36] M. Metin, “Hafif raylı sistemlerin titreşimleri ve kontrolü,” Doktora Tezi, Makine Mühendisliği ABD, Yıldız Teknik Üniversitesi, İstanbul, 2013

Development of a Measurement-Based Computational Method for Determination of Vehicle-Induced Road Loads on Railways and Its Analysis in a Simulation Environment

Year 2025, Issue: 21, 39 - 60, 31.01.2025
https://doi.org/10.47072/demiryolu.1525811

Abstract

During the movement of railway vehicles, a dynamic effect occurs on the rails in the wheel-rail contact zone due to the effect of parameters such as vehicle speed, mass, wheel, rail and road geometry and friction coefficient. These forces acting on the rail in lateral and vertical directions force the rail to deviate from its design geometry and cause the risk of derailment. Especially the lateral forces occurring in curves are one of the biggest causes of derailment. For this reason, it is very important to be able to monitor the wheel forces acting on the rails instantaneously, especially when the railways are first put into service. In addition, it is vital that track maintenance works are carried out in a timely manner in order to prevent derailment that may occur due to deformations in railways over time. In order to perform accurate and effective maintenance work, it is important to periodically monitor the forces acting on the rail. In this study, a new method has been developed to determine the lateral and vertical forces acting on the rail instantaneously by processing the data to be obtained from various measurements on the vehicle with various calculations. The calculation equations to be used in this method are obtained using Newton's second law. The variables to be processed in the equation are instantaneously changing parameters such as suspension deflections, bogie body and wheel set accelerations. By using such data measured on the vehicle in the equations, it is aimed to determine the lateral and vertical forces acting on the rail. In order to investigate the accuracy of the method before the field tests, the same vehicle and track model was created in SIMPACK multi-body dynamic simulation software, which is widely used in professional projects and academia. At the same time, the dynamic equations developed by the analytical method were modeled in MATLAB/Simulink. The vertical and lateral wheel contact force outputs obtained from the simulations with both used models (analytical and numerical) were compared to see if the developed equations are consistent. In the simulations, it is assumed that the vehicle travels on a straight track at a speed of 60 km/h and passes through a curve with a radius of 200 meters and a 14 cm superelevation height at the same speed. When the simulation outputs obtained from both models are compared, it is seen that consistent results are obtained over 99% for lateral and vertical wheel contact forces on the straight road, 94% for lateral wheel contact force and 97% for vertical wheel contact force on the curve. In addition, it has been demonstrated that the variables used in the developed equations can be measured on the vehicle in field measurements. In this respect, a feasible method that enables instantaneous monitoring of the forces acting on the rails from vehicles on urban railway lines has been introduced to the literature.

Project Number

222M001

References

  • [1] A. Uğur, “Investigation of the world railway sector development prospects and Turkey's status,” Alphanumeric Journal, vol. 7, no. 2, pp. 369-398, Dec. 2019, doi: 10.17093/alphanumeric.582290
  • [2] A. Bracciali, and P. Folgarait, “New sensor for lateral & vertical wheel-rail forces measurements,” 2008
  • [3] D. Cortis, S. Giulianelli, G. Malavasi, and S. Rossi, “Self-diagnosis method for checking the wayside systems for wheel-rail vertical load measurement,” Transport Problems, vol. 12, no. 4, pp. 91-100, Dec. 2017, doi: 10.20858/tp.2017.12.4.9
  • [4] P. Zhang, J. Moraal, and Z. Li, “Design, calibration and validation of a wheel-rail contact force measurement system in v-track,” Measurement, vol. 175, Apr. 2021, 109105, doi: 10.1016/j.measurement.2021.109105
  • [5] P. Antunes, H. Magalhães, J. A. C. Ambrósio, J. Pombo, and J. N. Costa, “A co-simulation approach to the wheel–rail contact with flexible railway track,” Multibody System Dynamics, vol. 45, no. 4, pp. 245-272, Oct. 2018, doi: 10.1007/s11044-018-09646-0
  • [6] Y. Ren, and J. Chen, “A new method for wheel–rail contact force continuous measurement using instrumented wheelset,” Vehicle System Dynamics, vol. 57, no. 2, pp. 269-285, Apr. 2017, doi: 10.1080/00423114.2018.1460853
  • [7] D. Younesian, F. Javid, and E. Esmailzadeh, “On-track measurement of lateral/vertical wheel loads of running railway vehicles based on the neural network,” Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition, vol. 17, no. 6, pp. 467-471, Jan. 2008, doi: 10.1115/IMECE2008-68201
  • [8] M. B. Bižić, D. Z. Petrović, M. C. Tomić, and Z. V. Djinović, “Development of method for experimental determination of wheel–rail contact forces and contact point position by using instrumented wheelset,” Measurement Science and Technolgy, vol. 28, no. 7, Jun. 2017, doi: 10.1088/1361-6501/aa666f
  • [9] P. Gullers, L. Andersson, and R. Lunden, “High-frequency vertical wheel–rail contact forces-field measurements and influence of track irregularities,” Wear, vol. 265, no. 9-10, pp. 1472-1478, Oct. 2008, doi: 10.1016/j.wear.2008.02.035
  • [10] R. Gupta, and P. K. Bharti, “Evaluation of wheel load & lateral forces, using lateral & vertical force measurement wheel in dynamic condition at rail wheel contact point,” International Journal of Engineering Research and Technology, vol. 4, no. 4, pp. 894-902, Apr. 2015, doi: 10.17577/IJERTV4IS041168
  • [11] T. Hondo, S. Kuniyuki, T. Tanaka, M. Suzuki, and H. Doi, “Measurement of wheel-rail lateral force using shear strain of wheel web in railway vehicle (Comparison with a conventional bending based method under wheel rotating condition),” Transactions of the JSME, vol. 87, no. 903, pp. 1-12, Nov. 2021, doi: 10.1299/transjsme.21-00253
  • [12] V. R. Bagheri, P. H. Tehrani and D. Younesian, “Optimal strain gauge placement in instrumented wheelset for measuring wheel-rail contact forces,” International Journal of Precision Engineering and Manufacturing, vol. 18, pp. 1519-1527, Nov. 2017, doi: 10.1007/s12541-017-0180-7
  • [13] V. R. Bagheri, D. Younesian and P. H. Tehrani, “A new methodology for the estimation of wheel–rail contact forces at a high-frequency range,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 232, no. 10, pp. 2353-2370, Apr. 2018, doi: 10.1177/0954409718771746
  • [14] P. Urda, S. Muñoz, J. F. Aceituno, and J. L. Escalona, “Wheel-rail contact force measurement using strain gauges and distance lasers on a scaled railway vehicle,” Mechanical Systems and Signal Processing, vol. 138, Apr. 2020, doi: 10.1016/j.ymssp.2019.106555
  • [15] T. Hondo, S. Kuniyuki, T. Tanaka, and M. Suzuki, “Method for measuring lateral force utilizing shear strains inside wheel load measuring holes of instrumented wheelset,” Quarterly Report of RTRI, vol. 63, no. 2, pp. 139-144, May. 2022, doi: 10.2219/rtriqr.63.2_139
  • [16] M. Bižić, and D. Petrović, “Design of instrumented wheelset for measuring wheel-rail interaction forces,” Metrology and Measurement Systems, vol. 30, no. 3, pp. 563-579, 2023, doi: 10.24425/mms.2023.146424
  • [17] J. Kalivoda, and P. Bauer, “Measurement of wheel-rail contact forces at the experimental roller rig,” EAN 2019, Jun. 2019.
  • [18] L. Wei, J. Zeng, P. Wu, and C. Song,, “Safety analysis of high speed trains under cross winds using indirect wheel-rail force measuring method,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 183, pp. 55-67, Dec. 2018, doi: 10.1016/j.jweia.2018.10.018
  • [19] T. Zhu, X. Wang, Y. Fan, M. Wang, J. Zhang, S. Xiao, G. Yang, and B. Yang, “A time domain method for wheel-rail force identification of rail vehicles,” International Journal of Vehicle Mechanics and Mobility, vol. 60, no. 3, pp. 790-809, Sep. 2022, doi: 10.1080/00423114.2020.1838562
  • [20] F. Xia, C. Cole, and P. Wolfs, “An inverse railway wagon model and its applications,” Vehicle System Dynamics, vol. 45, no. 6, pp. 583-605, May. 2007, doi: 10.1080/00423110601079151
  • [21] T. Zhu, S. N. Xiao, Y. Guangwu, W. Ma, and Z. Zhang, “The inverse identification theory and application to high-speed trains,” Journal of Computational and Theoretical Nanoscience, vol. 19, no. 6, pp. 1582-1586, Jun. 2013, doi: 10.1166/asl.2013.4572
  • [22] T. Zhu, S. N. Xiao, Y. Guangwu, W. Ma, and Z. Zhang, “An inverse dynamics method for railway vehicle systems,” Transport, vol. 29, no. 1, pp. 107-114, Mar. 2014, doi: 10.3846/16484142.2013.789979
  • [23] C. Li, W. Liu, and R. Liang, “Identification of vertical wheel-rail contact force based on an analytical model and measurement and its application in predicting ground-borne vibration,” Measurement, vol. 186, Dec. 2021, doi: 10.1016/j.measurement.2021.110182
  • [24] K. Mal, I. Hussain, K. Shaikh, T. Memon, B. S. Chowdhry, K. Nisar, and M. Gupta, “A new estimation of nonlinear contact forces of railway vehicle,” Intelligent Automation&Soft Computing, vol. 28, no. 3, pp. 823-841, Apr. 2021, doi: 10.32604/iasc.2021.016990
  • [25] A. Zhao, J. Huang, and J. Sun, “Estimation of wheel–rail structural interactions from motion signals of high-speed train bogie,” International Journal of Dynamics and Control, vol. 11, pp. 1609-1620, Nov. 2022, doi: 10.1007/s40435-022-01085-2
  • [26] X. Xu, S. Sun, L. Niu, Z. Ke, F. Yang, and X. Xiong, “An approach for the estimation of vertical wheel/rail force using dynamic signals,” Vehicle System Dynamics, vol. 62, no. 6, pp. 1-15, May. 2023, doi: 10.1080/00423114.2023.2214256
  • [27] A. C. Pires, G. R. Mendes, G. F. M. Santos, A. P. C. Dias, and A. A. Santos, “Indirect identification of wheel rail contact forces of an instrumented heavy haul railway vehicle using machine learning,” Mechanical Systems and Signal Processing, vol. 160, Nov. 2021, doi: 10.1016/j.ymssp.2021.107806
  • [28] A. Matsumoto vd., “A new measuring method of wheel–rail contact forces and related considerations,” Wear, vol. 265, no. 9-10, pp. 1518-1525, Oct. 2008, doi: 10.1016/j.wear.2008.02.031
  • [29] A. Matsumoto vd., “Actual states of wheel/rail contact forces and friction on sharp curves - continuous monitoring from in-service trains and numerical simulations,” Wear, vol. 314, no. 1-2, pp. 189-197, Jun. 2014, doi: 10.1016/j.wear.2013.11.046
  • [30] A. Kataori, K. Doi, H. Iijima, S. Momosaki, and K. Horioka, “Development of continous measurement equipment for angle of attack and results of measurements,” East Japan Railway Culture Foundation, no. 19, pp. 46-49, May. 2012
  • [31] N. Bosso, and N. Zampieri, “A novel analytical method to calculate wheel-rail tangential forces and validation on a scaled roller-rig,” Advances in Tribology, vol. 2018, no. 1, pp. 1-11, Aug. 2018, doi: 10.1155/2018/7298236
  • [32] Y. C. Cheng, S. Y. Lee, and H. H. Chen, “Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks,” Journal of Sound and Vibration, vol. 324, no. 1-2, pp. 139-160, Jul. 2009, doi: 10.1016/j.jsv.2009.01.053
  • [33] J. Zeng, L. Wei, and P. Wu, “Safety evaluation for railway vehicles using an improved indirect measurement method of wheel–rail forces,” Journal of Modern Transportation, vol. 24, pp. 114-123, May. 2016, doi: 10.1007/s40534-016-0107-5
  • [34] L. Wei, J. Zeng, P. Wu, and H. Gao, “Indirect method for wheel–rail force measurement and derailment evaluation,” International Journal of Vehicle Mechanics and Mobility, vol. 52, no. 12, pp. 1622-1641, Sep. 2014, doi: 10.1080/00423114.2014.953180
  • [35] V.K. Garg, and R.V. Dukkipati, Dynamics of railway vehicle systems. Orlando, Academic Press, 1984
  • [36] M. Metin, “Hafif raylı sistemlerin titreşimleri ve kontrolü,” Doktora Tezi, Makine Mühendisliği ABD, Yıldız Teknik Üniversitesi, İstanbul, 2013
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Dynamics, Vibration and Vibration Control, Machine Theory and Dynamics, Vehicle Technique and Dynamics
Journal Section Article
Authors

Nihat Bulduk 0000-0002-3011-213X

Muzaffer Metin 0000-0002-9724-3433

Deren Marabaoğlu 0009-0004-3709-1740

Project Number 222M001
Publication Date January 31, 2025
Submission Date July 31, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2025 Issue: 21

Cite

IEEE N. Bulduk, M. Metin, and D. Marabaoğlu, “Demiryollarında Araç Kaynaklı Yol Yüklerinin Belirlenmesi İçin Ölçüme Dayalı Hesaplamalı Bir Yöntemin Geliştirilmesi ve Simülasyon Ortamında Analizi”, Demiryolu Mühendisliği, no. 21, pp. 39–60, January 2025, doi: 10.47072/demiryolu.1525811.