Research Article
BibTex RIS Cite

Tren Setlerinin Fren Disklerinde Meydana Gelen Aşınma Problemine Karşı Kompozit Balata Kompozisyonlarında Nitril Kauçuk Kullanımının Etkilerinin Araştırılması

Year 2025, Issue: 21, 61 - 71, 31.01.2025
https://doi.org/10.47072/demiryolu.1536926

Abstract

Fren balataları ve fren diskleri belirli bir ömrü olan ve sürekli değiştirilmesi gereken sarf malzemelerdir. Bu nedenle tren setlerinin fren sistemlerinde kullanılan sürtünme çiftlerinin birbirleriyle uyumlu çalışmasının yanı sıra az aşınmaları ve böylece servis ömürlerinin uzaması arzu edilmektedir. Bu çalışmada dinamometre testleri sırasında fren disklerinde çatlamaya neden olan bir fren balatası kompozisyonuna nitril kauçuk ilavesi yapılmıştır. Daha sonra nitril kauçuk içeren ve içermeyen balataların karakteristiğinin belirlenmesi için balatalar fiziksel ve mekanik olarak bir dizi teste tabi tutulmuştur. Elde edilen deneysel sonuçlar balata kompozisyonuna kauçuk ilavesiyle birlikte balatada sertlik oranının düştüğünü, böylece balatanın fren diskine ilk alışma sürecinin kısaldığı ve disklerde meydana gelen aşınma miktarının azaldığını göstermiştir. Mekanik test sonuçları ise kauçuk içeren fren balatalarının sürtünme katsayılarının daha stabil hale gelerek seyir güvenliğini artırdığını göstermiştir.

Thanks

Çalışmamızı destekleyen TÜRASAŞ ve Kale Balata firmalarına teşekkür ederiz.

References

  • [1] C. Cruceanu, C. Camil “Aspects Regarding the Braking Capacity of Composite Brake Shoes for Railway Vehicles,” Mater. Plast., vol. 56, pp. 29-75, 2019, doi: 10.5772/37552
  • [2] R. Sharma, M. Dhingra, R. Pathak, “Braking System in Railway Vehicles,” IJERT, vol. 4, no. 1, pp. 206-211, 2015.
  • [3] A. Unal, “Investigation of braking system and composite brake pads in train sets based on thermo-mechanical finite element analysis,” Doctoral Thesis, Marmara University, 2022.
  • [4] J. Xiao, S. Xiao, J. Chen, and C. Zhang, “Wear mechanism of Cu- based brake pad for high-speed train braking at speed of 380 km/h,” Trib. Int., vol. 150, 2020, doi: 10.1016/j.triboint.2020.106357
  • [5] M. Muflikhun et al., Sentanuhady, S. Raghu, “Comprehensive analysis and economic study of railway brake failure from metal-based and composites-based materials,” Forces in Mechanics, vol. 12, 2023, doi: 10.1016/j.finmec.2023.100223
  • [6] M. Khadif, F. Putera, and R. Yotenka, “A study on characteristics of brake pad composite materials by varying the composition of epoxy, rice husk, Al2O3 and Fe2O3,” AE, vol.6, no. 2, 2023, doi: 10.31603/ae.9121
  • [7] J. Agunsoye, S. Bello, and A. Bamigabiye, “Recycled ceramic composite for automobile brake pad application,” J. Phys. Res., vol. 39, no. 1, pp. 35-46, 2018, doi: 10.2478/jrp-2018-0004
  • [8] A. Unal, O. Demirdalmis, “The effects of using apricot kernel shell, an environmentally friendly material, in composite brake pads on friction performance,” Trib. Int., vol. 197, 2024, doi: 10.1016/j.triboint.2024.109734
  • [9] A. Unal, N. Akkus, S. T. Kandil, “Demiryolu aracı disk balatalarının tasarımında yüksek sıcaklığın neden olduğu fren zayıflama probleminin belirlenmesi için sonlu elemanlar yöntemi yaklaşımı,” Demiryolu Mühendisliği, no. 15, pp. 134-144, Jan. 2022. doi: 10.47072/demiryolu.1027982
  • [10] A. Unal, and N. Akkus, “Analytical and experimental investigation of composite pads created by using coke dust against the fading problem in railway vehicles,” Proc. Inst. Mech. Eng. Pt. F J. Rail Rapid Transit, vol. 237, no. 2, 2022, doi: 10.1177/09544097221100920
  • [11] S. Savetlana, A. Lubis, and L. Aditaya, “Fly ash/phenolic resin composite for brake pad application fabrication, materials and thermal properties,” Composites Theory and Practice, vol. 20, 2020.
  • [12] P. Menezes, P. Rohatgi, and M. Lovell, “Studies on the tribological behaviour of natural fiber reinforced polymer composite,” Green Tribology, pp. 329-345, 2012
  • [13] E. Oluwafemi et all., “Biomass-based composites for brake pads: A review,” IJMET, vol. 10, no. 3, pp. 920-943, 2019.
  • [14] M. Eriksson, F. Bergman, and S. Jacobson, “On the nature of tribological contact in gutomotive brakes,” Wear, vol. 256, pp. 26-36, 2002.
  • [15] M. Kumar, J. Bijwe, “Role of different metallic fillers in non-asbestos organic friction composites for controlling sensitivy of coefficient of friction to load and speed,” Tribol. Int., vol. 43, no. 6, pp. 965-974, 2010.
  • [16] G. Straffelini et all., “Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment,” Environmental Pollution, vol. 207, pp. 211-219, 2015, doi: 10.1016/j.envpol.2015.09.024
  • [17] L. Wei, Y. Chay, C. Cheung, and D. Jin, “Tribology performance, airborne particle emissions and brake squeal noise of copper-free friction materials,” Wear, vol. 448, 2020, doi: 10.1016/j.wear.2020.203215
  • [18] I. Ezekile, F. Inambao, and G. Adewumi, “Effects of fibre, fillers and binders on automobile brake pad performance: A review,” IJMET, vol. 10, no. 6, pp. 135-150, 2019.
  • [19] A. Borawski, “Conventional and unconventional materials used in the production of brake pads-review,” Sci Eng Compos Mater, vol. 27, pp. 374-396, 2020, doi: 10.1515/secm-2020-0041
  • [20] G. Mieczkowski, “Stress fields at the tip of a sharp inclusion on the interface of a biomaterial,” Mech Compos Mater, vol. 52, no. 5, pp. 601-610, 2016.
  • [21] N. Dureja, N. Bijwe, P. Gurunath, “Role of type and amount of resin on performance behaviour of non-asbestos organic friction materials,” J. Reinf. Plast. Compos., vol. 29, no. 4, pp. 489-497, 2009.
  • [22] M. Eriksson and S. Jacobson, “Tribological surfaces of organic brake pads,” Tribol. Int. vol. 33, pp. 817-827, 2000.
  • [23] A. Saffar, A. Shojaei, “Effect of rubber component on the performance of brake friction materials,” Wear, vol. 274, pp. 286-297, 2012, doi: 10.1016/j.wear.2011.09.012
  • [24] Y. Chang et all., “Size effect of tire rubber particles on tribological properties of brake friction materials,” Wear, vol. 394, pp. 80-86, 2018, doi: 10.1016/j.wear.2017.10.004
  • [25] Y. Liu et all., “Application of nano powdered rubber in friction materials,” Wear, vol. 261, pp. 225-229.
  • [26] A. Tamayao et all., “Preparation and properties of sustainable brake pads with recycled end of life tire rubber particles,” Polymers, vol. 13, no. 19, doi: 10.3390/polym13193371

Investigation of the Effects of Using Nitrile Rubber in Composite Brake Pad Compositions Against the Wear Problem Occurring in Brake Discs of Train Sets

Year 2025, Issue: 21, 61 - 71, 31.01.2025
https://doi.org/10.47072/demiryolu.1536926

Abstract

Brake pads and brake discs are consumables that have a limited lifespan and need to be replaced continuously. For this reason, it is desirable that the friction pairs used in the brake systems of train sets work in harmony with each other and wear less, thus extending their service life. In this study, nitrile rubber was added to a brake pad composition that caused cracking in brake discs during dynamometer tests. The pads were then subjected to a series of physical and mechanical tests to determine the characteristics of the pads with and without nitrile rubber. The experimental results obtained showed that the hardness of the pad decreased with the addition of rubber to the pad composition and thus the bedding period of the pads to the brake disc is shortened and amount of wear on the discs decreased. The mechanical test results showed that the friction coefficients of the rubber-containing brake pads became more stable and increased the safety of driving.

References

  • [1] C. Cruceanu, C. Camil “Aspects Regarding the Braking Capacity of Composite Brake Shoes for Railway Vehicles,” Mater. Plast., vol. 56, pp. 29-75, 2019, doi: 10.5772/37552
  • [2] R. Sharma, M. Dhingra, R. Pathak, “Braking System in Railway Vehicles,” IJERT, vol. 4, no. 1, pp. 206-211, 2015.
  • [3] A. Unal, “Investigation of braking system and composite brake pads in train sets based on thermo-mechanical finite element analysis,” Doctoral Thesis, Marmara University, 2022.
  • [4] J. Xiao, S. Xiao, J. Chen, and C. Zhang, “Wear mechanism of Cu- based brake pad for high-speed train braking at speed of 380 km/h,” Trib. Int., vol. 150, 2020, doi: 10.1016/j.triboint.2020.106357
  • [5] M. Muflikhun et al., Sentanuhady, S. Raghu, “Comprehensive analysis and economic study of railway brake failure from metal-based and composites-based materials,” Forces in Mechanics, vol. 12, 2023, doi: 10.1016/j.finmec.2023.100223
  • [6] M. Khadif, F. Putera, and R. Yotenka, “A study on characteristics of brake pad composite materials by varying the composition of epoxy, rice husk, Al2O3 and Fe2O3,” AE, vol.6, no. 2, 2023, doi: 10.31603/ae.9121
  • [7] J. Agunsoye, S. Bello, and A. Bamigabiye, “Recycled ceramic composite for automobile brake pad application,” J. Phys. Res., vol. 39, no. 1, pp. 35-46, 2018, doi: 10.2478/jrp-2018-0004
  • [8] A. Unal, O. Demirdalmis, “The effects of using apricot kernel shell, an environmentally friendly material, in composite brake pads on friction performance,” Trib. Int., vol. 197, 2024, doi: 10.1016/j.triboint.2024.109734
  • [9] A. Unal, N. Akkus, S. T. Kandil, “Demiryolu aracı disk balatalarının tasarımında yüksek sıcaklığın neden olduğu fren zayıflama probleminin belirlenmesi için sonlu elemanlar yöntemi yaklaşımı,” Demiryolu Mühendisliği, no. 15, pp. 134-144, Jan. 2022. doi: 10.47072/demiryolu.1027982
  • [10] A. Unal, and N. Akkus, “Analytical and experimental investigation of composite pads created by using coke dust against the fading problem in railway vehicles,” Proc. Inst. Mech. Eng. Pt. F J. Rail Rapid Transit, vol. 237, no. 2, 2022, doi: 10.1177/09544097221100920
  • [11] S. Savetlana, A. Lubis, and L. Aditaya, “Fly ash/phenolic resin composite for brake pad application fabrication, materials and thermal properties,” Composites Theory and Practice, vol. 20, 2020.
  • [12] P. Menezes, P. Rohatgi, and M. Lovell, “Studies on the tribological behaviour of natural fiber reinforced polymer composite,” Green Tribology, pp. 329-345, 2012
  • [13] E. Oluwafemi et all., “Biomass-based composites for brake pads: A review,” IJMET, vol. 10, no. 3, pp. 920-943, 2019.
  • [14] M. Eriksson, F. Bergman, and S. Jacobson, “On the nature of tribological contact in gutomotive brakes,” Wear, vol. 256, pp. 26-36, 2002.
  • [15] M. Kumar, J. Bijwe, “Role of different metallic fillers in non-asbestos organic friction composites for controlling sensitivy of coefficient of friction to load and speed,” Tribol. Int., vol. 43, no. 6, pp. 965-974, 2010.
  • [16] G. Straffelini et all., “Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment,” Environmental Pollution, vol. 207, pp. 211-219, 2015, doi: 10.1016/j.envpol.2015.09.024
  • [17] L. Wei, Y. Chay, C. Cheung, and D. Jin, “Tribology performance, airborne particle emissions and brake squeal noise of copper-free friction materials,” Wear, vol. 448, 2020, doi: 10.1016/j.wear.2020.203215
  • [18] I. Ezekile, F. Inambao, and G. Adewumi, “Effects of fibre, fillers and binders on automobile brake pad performance: A review,” IJMET, vol. 10, no. 6, pp. 135-150, 2019.
  • [19] A. Borawski, “Conventional and unconventional materials used in the production of brake pads-review,” Sci Eng Compos Mater, vol. 27, pp. 374-396, 2020, doi: 10.1515/secm-2020-0041
  • [20] G. Mieczkowski, “Stress fields at the tip of a sharp inclusion on the interface of a biomaterial,” Mech Compos Mater, vol. 52, no. 5, pp. 601-610, 2016.
  • [21] N. Dureja, N. Bijwe, P. Gurunath, “Role of type and amount of resin on performance behaviour of non-asbestos organic friction materials,” J. Reinf. Plast. Compos., vol. 29, no. 4, pp. 489-497, 2009.
  • [22] M. Eriksson and S. Jacobson, “Tribological surfaces of organic brake pads,” Tribol. Int. vol. 33, pp. 817-827, 2000.
  • [23] A. Saffar, A. Shojaei, “Effect of rubber component on the performance of brake friction materials,” Wear, vol. 274, pp. 286-297, 2012, doi: 10.1016/j.wear.2011.09.012
  • [24] Y. Chang et all., “Size effect of tire rubber particles on tribological properties of brake friction materials,” Wear, vol. 394, pp. 80-86, 2018, doi: 10.1016/j.wear.2017.10.004
  • [25] Y. Liu et all., “Application of nano powdered rubber in friction materials,” Wear, vol. 261, pp. 225-229.
  • [26] A. Tamayao et all., “Preparation and properties of sustainable brake pads with recycled end of life tire rubber particles,” Polymers, vol. 13, no. 19, doi: 10.3390/polym13193371
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Material Design and Behaviors, Tribology, Composite and Hybrid Materials
Journal Section Article
Authors

Abdülkadir Ünal 0000-0002-7167-1536

Ozan Demirdalmış 0000-0003-2060-4795

Publication Date January 31, 2025
Submission Date August 21, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2025 Issue: 21

Cite

IEEE A. Ünal and O. Demirdalmış, “Tren Setlerinin Fren Disklerinde Meydana Gelen Aşınma Problemine Karşı Kompozit Balata Kompozisyonlarında Nitril Kauçuk Kullanımının Etkilerinin Araştırılması”, Demiryolu Mühendisliği, no. 21, pp. 61–71, January 2025, doi: 10.47072/demiryolu.1536926.