Research Article
BibTex RIS Cite

Heyelan Tünel İlişkisinin Sayısal Analizlerle Değerlendirilmesi (Ankara-İstanbul Hızlı Tren Projesi T8 Tüneli)

Year 2025, Issue: 21, 13 - 26, 31.01.2025
https://doi.org/10.47072/demiryolu.1537683

Abstract

Yüksek standartlı demiryolları, kat ettikleri uzun mesafeler ve içerdiği yoğun mühendislik yapıları sebebiyle tasarım, yapım ve işletmecilik açısından oldukça karmaşık yapılardır. Demiryolu güzergah çalışmaları sırasında tünel, viyadük, altgeçit, üstgeçit gibi sanat yapılarına sıklıkla başvurulmakta, buda projenin maliyetini, yapım süresini ve işletmecilik sürecinde bakım maliyetlerini doğrudan etkilemektedir. Bu nedenle yüksek standartlı demir yolu projelerinin temelini güzergah çalışmaları oluşturmaktadır. Bu çalışmada, heyelan altından geçen Doğançay Ripajı T8 Tüneli 2 farklı güzergah alternetifi (heyelana en yakın ve en uzak) irdelenmiştir. Bu amaçla öncelikle sondaj ve jeodezik yöntemler kullanılarak heyelan geometrileri belirlenmiş ardından geri analiz ve ileri analiz yöntemleri kullanılarak heyelanların farklı güzergahlara etkileri değerlendirilmiştir. Sonuç olarak heyelanlı bir bölgeden geçen T8 Tünelinde en kısa tünel güzergahının daha fazla destekleme gerektireceği bu nedenle heyelan kayma yüzeyinden en uzak mesafede tünelin konumlandırılması gerektiği anlaşılmıştır. Bu anlayışa göre konumlandırılan T8 Tüneli sorunsuz bir şekilde 2021 yılında ulaşıma açılmıştır.

Thanks

Yazarlar TCDD yetkililerine, Fugro-SİAL ve Yüksel Proje çalışanlarına göstermiş oldukları destekten dolayı teşekkür ederler.

References

  • [1] Application of digital track geometry analysis to the planning of tamping and lining/levelling work, UIC Code 715-1, 2003
  • [2] Recommandations pour la gestion des rails, UIC Code 715-2, 2003
  • [3] E. Poşluk, “Dünyadaki Son Gelişmeler Çerçevesinde Yüksek Hızlı Demiryolu Tünel Tasarımı ve Türkiye’deki Durum,” Demiryolu Mühendisliği, vol. 15, pp. 13–29. 2022
  • [4] J. Hadjigeorgiou, “Understanding managing and communicating geomechanical mining risk,” Mining Technology, vol. 129(3), pp. 159-173, 2020
  • [5] Y Y. Jiao, X L. Zhang, J. Zhao, “A two-dimensional DDA contact constitutive model for simulating rock fragmentation,” Journal of Engineering Mechanics—ASCE, vol. 138 (2), pp. 199–209, 2012.
  • [6] J. Torano, R R. Diez, J M R, Rivas Cid, M M C, Barciella, “FEM modeling of roadways driven in a fractured rock mass under a longwall influence,” Computers and Geotechnics, vol. 29 (6), pp. 411–431, 2002.
  • [7] C. Gokceoglu, E B. Aygar, H A. Nefeslioglu, S. Karahan, S. Gullu, “A geotechnical perspective on a complex geological environment in a high-speed railway tunnel excavation (a case study from Türkiye),” Infrastructures, vol. 7(11), pp. 155, 2022.
  • [8] E. Temur, A. Aksay, “1:100.000 Ölçekli Türkiye Jeoloji Haritaları, Adapazarı G24 Paftası,” MTA Yayınları no:31, 2002.
  • [9] E. Poşluk, S. Dalğıç, İ. Kuşku, E A. Poşluk, “Heyelan Islahında Gereken Dayanma Kuvvetinin Limit Denge Yöntemi ile Belirlenmesi” İstanbul Yerbilimleri Dergisi, vol. 27(2), pp. 77-88, 2014.
  • [10] ISRM, The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. Suggested Methods prepared by the Commission on Testing Methods. Kozan Ofset, Ankara. 2007.
  • [11] Yüksel Proje Uluslararası A.Ş., Ankara-İstanbul Hızlı Tren Projesi Doğançay Ripajı İlk Kısım proje raporu, Ankara, 2013 (Yayımlanmamış).
  • [12] FUGRO-SİAL, “Ankara İstanbul Hızlı Tren Projesi Doğançay Ripajı İlk Kısım 8 nolu tünel değerlendirme raporu” Ankara, 2013 (Yayımlanmamış).
  • [13] Ö. Aydan, R. Ulusay, N. Tokashiki, “A New Rock Mass Quality Rating System: Rock Mass Quality Rating (RMQR) and Its Application to the Estimation of Geomechanical Characteristics of Rock Masses,” Rock Mechanics and Rock Engineering, vol. 47, pp. 1255–1276, 2014.
  • [14] H. Sönmez, R. Ulusay, “A discussion on the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies,” Yerbilimleri, vol. 26, pp. 77-99, 2002.
  • [15] Z T, Bieniawski, Engineering Rock Mass Classifications. Wiley, New York, p. 251, 1989.
  • [16] N. Barton, R. Lien, J. Lunde, “Engineering classification of rock masses for the design of tunnel support,” Rock Mechanics, vol. 6, pp. 189-239, 1974.
  • [17] E. Hoek, P. Marinos, M. Benissi, “Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses: The case of Athens schist formation,” Bullettin of Engineering Geology and Environment, vol. 57, pp. 151-160, 2002.
  • [18] P M. Kintner, B M. Ledvina, “The ionosphere, radio navigation, and global navigation satellite systems,” Adv. Space Res. vol. 35, pp. 788–811, 2005.
  • [19] L K. Napton, E.A. Greathouse, Archaeological mapping, site grids, and surveying, Leftcoast Press, Walnut Creek, CA, pp. 177–234, 2009.
  • [20] P. Bolstad, GIS Fundamentals: A First Text on Geographic Information Systems, Eider Press, White Bear Lake, MN, 2000.
  • [21] I.J., Larsen, D R. Montgomery, O. Korup, “Landslide erosion controlled by hillslope material” Nature Geoscience, vol. 3, pp. 247-251, 2010.
  • [22] E. Poşluk, “T26 Tünelindeki Sıkışan Kayalarda Tünel Açma Makinesi (TBM) ile Klasik Kazı Yöntemlerinin Karşılaştırılması”, Doktora Tezi, İstanbul Üniversitesi-Cerrahpaşa Lisans Üstü Eğitim Enstitüsü, İstanbul, 2024.
  • [23] ITA, “ITA Working Group on General Approaches to the Design of Tunnels, Guideline for the Design of Tunnels,” Tunnelling and Underground Space Technology, vol. 3, pp. 237-248, 1988.
  • [24] M. Panet, J. Sulem, “Convergence-confinement method for tunnel design,” Gewerbestrasse, vol. 1, pp.1-151, 2022.
  • [25] D., Kolymbas, “The new austrain tunnelling method, Tunnelling and tunnel Mechanics: A Rational Approach to Tunnelling,” Tunnelling, pp. 171-175, 2008.
  • [26] O C. Zienkiewicz, K. Morgan, “Finite Elements And Approximation,” A Wiley-Interscience Publication, New York, 1983.
  • [27] Roclab, 2011, Version 1.032, www.rocscience.com
  • [28] B. Ün, A. Yıldız, “Şev Stabilitesi Probleminin Geri Analizle Çözümü: Örnek Bir Vaka,” Journal of Engineering and Science, vol. 9(1), pp. 174-181, 2021.
  • [29] ÖNORM B 2203, Österreichisches Normungsinstitut. ÖNORM B 2203 Untertagebauarbeiten –Werkvertragsnorm. Wien, 1994.
  • [30] RocScience, 2020. Phase2 8.0 User Guide, [Accessed: 17-Nov-2021]. https://www.rocscience.com/downloads/phase2/ Phase2_ TutorialManual.
  • [31] FHWA, Federal Highway Administration, “Technical Manual for Design and Construction of Road Tunnels,” Civil Elements, pp. 702, 2009.
  • [32] P R. Sheorey, M G. Murali, A. Sinha, “Influence of elastic constants on the horizontal in situ stress,” International Journal of Rock Mechanics and Mining Sciences, vol. 38 (1), pp 1211–1216, 2001.
  • [33] J M. Duncan, S. G. VVright “Zemin Şevlerinin Duraylılığı,” Çeviren: Kamil Kayabalı, Gazi Kitabevi, Ankara, 299 s., 2005.
  • [34] M. Incecik, E. Poşluk, “Tunnel T26 on the Ankara–Istanbul high speed rail route–Tunnelling under difficult conditions,”Geomechanics and Tunnelling, vol. 11(5), pp. 434-440, 2018.

Evaluation of Landslide Tunnel Relationship with Numerical Analysis (Ankara-Istanbul High Speed Train Project T8 Tunnel)

Year 2025, Issue: 21, 13 - 26, 31.01.2025
https://doi.org/10.47072/demiryolu.1537683

Abstract

High standard railways are quite complex structures in terms of design, construction and operation due to the long distances they cover and the intensive engineering structures they contain. During railway route studies, engineering structures such as tunnels, viaducts, underpasses and overpasses are frequently used, which directly affects the cost of the project, construction period and maintenance costs during the operation process. Therefore, route studies constitute the basis of high standard railway projects. In this study, 2 different route alternatives (closest and farthest to the landslide) of Doğançay Ripajı T8 Tunnel passing under the landslide were examined. For this purpose, firstly, landslide geometries were determined using drilling and geodetic methods, then the effects of landslides on different routes were evaluated using back analysis and forward analysis methods. As a result, it was understood that the shortest tunnel route in the T8 Tunnel passing through a landslide region would require more support, therefore the tunnel should be positioned at the farthest distance from the landslide sliding surface. Positioned according to this understanding, the T8 Tunnel was opened to traffic in 2021 without any problems.

References

  • [1] Application of digital track geometry analysis to the planning of tamping and lining/levelling work, UIC Code 715-1, 2003
  • [2] Recommandations pour la gestion des rails, UIC Code 715-2, 2003
  • [3] E. Poşluk, “Dünyadaki Son Gelişmeler Çerçevesinde Yüksek Hızlı Demiryolu Tünel Tasarımı ve Türkiye’deki Durum,” Demiryolu Mühendisliği, vol. 15, pp. 13–29. 2022
  • [4] J. Hadjigeorgiou, “Understanding managing and communicating geomechanical mining risk,” Mining Technology, vol. 129(3), pp. 159-173, 2020
  • [5] Y Y. Jiao, X L. Zhang, J. Zhao, “A two-dimensional DDA contact constitutive model for simulating rock fragmentation,” Journal of Engineering Mechanics—ASCE, vol. 138 (2), pp. 199–209, 2012.
  • [6] J. Torano, R R. Diez, J M R, Rivas Cid, M M C, Barciella, “FEM modeling of roadways driven in a fractured rock mass under a longwall influence,” Computers and Geotechnics, vol. 29 (6), pp. 411–431, 2002.
  • [7] C. Gokceoglu, E B. Aygar, H A. Nefeslioglu, S. Karahan, S. Gullu, “A geotechnical perspective on a complex geological environment in a high-speed railway tunnel excavation (a case study from Türkiye),” Infrastructures, vol. 7(11), pp. 155, 2022.
  • [8] E. Temur, A. Aksay, “1:100.000 Ölçekli Türkiye Jeoloji Haritaları, Adapazarı G24 Paftası,” MTA Yayınları no:31, 2002.
  • [9] E. Poşluk, S. Dalğıç, İ. Kuşku, E A. Poşluk, “Heyelan Islahında Gereken Dayanma Kuvvetinin Limit Denge Yöntemi ile Belirlenmesi” İstanbul Yerbilimleri Dergisi, vol. 27(2), pp. 77-88, 2014.
  • [10] ISRM, The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. Suggested Methods prepared by the Commission on Testing Methods. Kozan Ofset, Ankara. 2007.
  • [11] Yüksel Proje Uluslararası A.Ş., Ankara-İstanbul Hızlı Tren Projesi Doğançay Ripajı İlk Kısım proje raporu, Ankara, 2013 (Yayımlanmamış).
  • [12] FUGRO-SİAL, “Ankara İstanbul Hızlı Tren Projesi Doğançay Ripajı İlk Kısım 8 nolu tünel değerlendirme raporu” Ankara, 2013 (Yayımlanmamış).
  • [13] Ö. Aydan, R. Ulusay, N. Tokashiki, “A New Rock Mass Quality Rating System: Rock Mass Quality Rating (RMQR) and Its Application to the Estimation of Geomechanical Characteristics of Rock Masses,” Rock Mechanics and Rock Engineering, vol. 47, pp. 1255–1276, 2014.
  • [14] H. Sönmez, R. Ulusay, “A discussion on the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies,” Yerbilimleri, vol. 26, pp. 77-99, 2002.
  • [15] Z T, Bieniawski, Engineering Rock Mass Classifications. Wiley, New York, p. 251, 1989.
  • [16] N. Barton, R. Lien, J. Lunde, “Engineering classification of rock masses for the design of tunnel support,” Rock Mechanics, vol. 6, pp. 189-239, 1974.
  • [17] E. Hoek, P. Marinos, M. Benissi, “Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses: The case of Athens schist formation,” Bullettin of Engineering Geology and Environment, vol. 57, pp. 151-160, 2002.
  • [18] P M. Kintner, B M. Ledvina, “The ionosphere, radio navigation, and global navigation satellite systems,” Adv. Space Res. vol. 35, pp. 788–811, 2005.
  • [19] L K. Napton, E.A. Greathouse, Archaeological mapping, site grids, and surveying, Leftcoast Press, Walnut Creek, CA, pp. 177–234, 2009.
  • [20] P. Bolstad, GIS Fundamentals: A First Text on Geographic Information Systems, Eider Press, White Bear Lake, MN, 2000.
  • [21] I.J., Larsen, D R. Montgomery, O. Korup, “Landslide erosion controlled by hillslope material” Nature Geoscience, vol. 3, pp. 247-251, 2010.
  • [22] E. Poşluk, “T26 Tünelindeki Sıkışan Kayalarda Tünel Açma Makinesi (TBM) ile Klasik Kazı Yöntemlerinin Karşılaştırılması”, Doktora Tezi, İstanbul Üniversitesi-Cerrahpaşa Lisans Üstü Eğitim Enstitüsü, İstanbul, 2024.
  • [23] ITA, “ITA Working Group on General Approaches to the Design of Tunnels, Guideline for the Design of Tunnels,” Tunnelling and Underground Space Technology, vol. 3, pp. 237-248, 1988.
  • [24] M. Panet, J. Sulem, “Convergence-confinement method for tunnel design,” Gewerbestrasse, vol. 1, pp.1-151, 2022.
  • [25] D., Kolymbas, “The new austrain tunnelling method, Tunnelling and tunnel Mechanics: A Rational Approach to Tunnelling,” Tunnelling, pp. 171-175, 2008.
  • [26] O C. Zienkiewicz, K. Morgan, “Finite Elements And Approximation,” A Wiley-Interscience Publication, New York, 1983.
  • [27] Roclab, 2011, Version 1.032, www.rocscience.com
  • [28] B. Ün, A. Yıldız, “Şev Stabilitesi Probleminin Geri Analizle Çözümü: Örnek Bir Vaka,” Journal of Engineering and Science, vol. 9(1), pp. 174-181, 2021.
  • [29] ÖNORM B 2203, Österreichisches Normungsinstitut. ÖNORM B 2203 Untertagebauarbeiten –Werkvertragsnorm. Wien, 1994.
  • [30] RocScience, 2020. Phase2 8.0 User Guide, [Accessed: 17-Nov-2021]. https://www.rocscience.com/downloads/phase2/ Phase2_ TutorialManual.
  • [31] FHWA, Federal Highway Administration, “Technical Manual for Design and Construction of Road Tunnels,” Civil Elements, pp. 702, 2009.
  • [32] P R. Sheorey, M G. Murali, A. Sinha, “Influence of elastic constants on the horizontal in situ stress,” International Journal of Rock Mechanics and Mining Sciences, vol. 38 (1), pp 1211–1216, 2001.
  • [33] J M. Duncan, S. G. VVright “Zemin Şevlerinin Duraylılığı,” Çeviren: Kamil Kayabalı, Gazi Kitabevi, Ankara, 299 s., 2005.
  • [34] M. Incecik, E. Poşluk, “Tunnel T26 on the Ankara–Istanbul high speed rail route–Tunnelling under difficult conditions,”Geomechanics and Tunnelling, vol. 11(5), pp. 434-440, 2018.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering, Numerical Modelization in Civil Engineering, Rock Mechanics, Geology of Engineering
Journal Section Article
Authors

Evren Poşluk 0000-0001-9520-5268

Kenan Oğul 0000-0001-7037-4241

Hasan Bozkurt 0000-0001-7539-8285

Publication Date January 31, 2025
Submission Date November 12, 2024
Acceptance Date December 11, 2024
Published in Issue Year 2025 Issue: 21

Cite

IEEE E. Poşluk, K. Oğul, and H. Bozkurt, “Heyelan Tünel İlişkisinin Sayısal Analizlerle Değerlendirilmesi (Ankara-İstanbul Hızlı Tren Projesi T8 Tüneli)”, Demiryolu Mühendisliği, no. 21, pp. 13–26, January 2025, doi: 10.47072/demiryolu.1537683.