Research Article
BibTex RIS Cite

Raylı Araçlarda Kullanılan Auxetic ve Bal Peteği Çekirdek Katmanlı Sandviç Plakaların Titreşim Analizi

Year 2025, Issue: 21, 155 - 167, 31.01.2025
https://doi.org/10.47072/demiryolu.1603016

Abstract

Bu makale, birinci mertebeden kayma deformasyon teorisine (FSDT) ve sonlu elemanlar metoduna (FEM) dayanan auxetic ve bal peteği çekirdek katmanına sahip sandviç plakaların serbest titreşim analizlerini sunmaktadır. Önerilen plakalar, demiryolu araç gövdelerinin yapımında en yaygın kullanılan malzemelerin başında gelen Al 6005A-T6 alüminyum alaşımdan yapılmış auxetic veya bal peteği çekirdek katmanı yine aynı alüminyum alaşımdan oluşturulmuş yüzey katmanları arasına yerleştirilmiştir. Sandviç plakaların hareket denklemleri için Hamilton prensibi kullanılmış ve çözümleri için ise Navier yöntemi uygulanmıştır. Elde edilen çözümlerde iki farklı gözeneklilik yapısı, dört farklı gözeneklilik oranı, üç farklı en/boy oranı, üç farklı çekirdek katmanı/yükseklik oranı ve dört farklı sınır koşulları kullanılarak bu parametrelerin serbest titreşime etkileri incelenmiştir. Ele alınan gözeneklilik yapısı, gözeneklilik oranı, en/boy oranı, çekirdek katmanı/yükseklik oranı ve sınır koşulları sandviç plakanın dinamik davranışını önemli ölçüde etkilediği belirlenmiştir.

References

  • [1] F. Arifurrahman, B. A. Budiman, and M. Aziz, “On the lightweight structural design for electric road and railway vehicles using fiber reinforced polymer composites,” Int. J. Sustain. Transp. Technol., vol. 1, no. 1, pp. 21–29, Apr. 2018, doi: 10.31427/IJSTT.2018.1.1.4
  • [2] M. Nagai, H. Yoshida, T. Tohtake, and Y. Suzuki, “Coupled vibration of passenger and lightweight car-body in consideration of human-body biomechanics,” Veh. Syst. Dyn., vol. 44, no. 1, pp. 601–611, Jan. 2006, doi: 10.1080/00423110600879361
  • [3] M. Khadem Sameni and A. Moradi, “Railway capacity: A review of analysis methods,” J. Rail Transp. Plan. Manag., vol. 24, p. 100357, Dec. 2022, doi: 10.1016/j.jrtpm.2022.100357
  • [4] Z. Wu et al., “Structural integrity issues of additively manufactured railway components: Progress and challenges,” Eng. Fail. Anal., vol. 149, p. 107265, Jul. 2023, doi: 10.1016/j.engfailanal.2023.107265
  • [5] A. Önder and M. Robinson, “Investigating the feasibility of a new testing method for GFRP/polymer foam sandwich composites used in railway passenger vehicles,” Compos. Struct., vol. 233, p. 111576, Feb. 2020, doi: 10.1016/j.compstruct.2019.111576
  • [6] A. Sakly, A. Laksimi, H. Kebir, and S. Benmedakhen, “Experimental and modelling study of low velocity impacts on composite sandwich structures for railway applications,” Eng. Fail. Anal., vol. 68, pp. 22–31, Oct. 2016, doi: 10.1016/j.engfailanal.2016.03.001
  • [7] V. Sharma et al., “Multi-criteria decision making methods for selection of lightweight material for railway vehicles,” Materials, vol. 16, no. 1, p. 368, Dec. 2022, doi: 10.3390/ma16010368
  • [8] O. F. Hosseinabadi and M. R. Khedmati, “A review on ultimate strength of aluminum structural elements and systems for marine applications,” Ocean Eng., vol. 232, p. 109153, Jul. 2021, doi: 10.1016/j.oceaneng.2021.109153
  • [9] X. Sun, X. Han, C. Dong, and X. Li, “Applications of aluminum alloys in rail transportation,” Advanced Aluminum Composites and Alloys, L. A. Dobrzański, Ed. Rijeka: IntechOpen, 2021, doi: 10.5772/intechopen.96442
  • [10] Y. Zhao, Z. Yang, T. Yu, and D. Xin, “Mechanical properties and energy absorption capabilities of aluminum foam sandwich structure subjected to low-velocity impact,” Constr. Build. Mater., vol. 273, p. 121996, 2021, doi: 10.1016/j.conbuildmat.2020.121996
  • [11] H. Junaedi, T. Khan, and T. A. Sebaey, “Characteristics of carbon-fiber-reinforced polymer face sheet and glass-fiber-reinforced rigid polyurethane foam sandwich structures under flexural and compression tests,” Materials (Basel)., vol. 16, no. 14, 2023, doi: 10.3390/ma16145101
  • [12] V. Pourriahi, M. Heidari-Rarani, and A. T. Isfahani, “Influence of geometric parameters on free vibration behavior of an aluminum honeycomb core sandwich beam using experimentally validated finite element models,” J. Sandw. Struct. & Mater., vol. 24, no. 2, pp. 1449–1469, 2022, doi: 10.1177/10996362211053633
  • [13] V. S. Sokolinsky, H. F. Von Bremen, J. A. Lavoie, and S. R. Nutt, “Analytical and experimental study of free vibration response of soft-core sandwich beams,” J. Sandw. Struct. & Mater., vol. 6, no. 3, pp. 239–261, 2004, doi: 10.1177/1099636204034634
  • [14] A. Monti, A. El Mahi, Z. Jendli, and L. Guillaumat, “Experimental and finite elements analysis of the vibration behavior of a bio-based composite sandwich beam,” Compos. Part B Eng., vol. 110, pp. 466–475, 2017, doi: 10.1016/j.compositesb.2016.11.045
  • [15] F. Li and W. Yuan, “Free vibration and sound insulation of functionally graded honeycomb sandwich plates,” J. Sandw. Struct. & Mater., vol. 24, no. 1, pp. 565–600, 2022, doi:10.1177/10996362211020440
  • [16] M. Nouraei, V. Zamani and Ö. Civalek, “Vibration of smart sandwich plate with an auxetic core and dual-FG nanocomposite layers integrated with piezoceramic actuators,” Compos. Struct., vol. 315, vol. 315, pp. 117014, Feb. 2023, doi: 10.1016/j.compstruct.2023.117014
  • [17] V. K. Tran, T. T. Tran, M. Van Phung, Q. H. Pham, and T. Nguyen-Thoi, “A finite element formulation and nonlocal theory for the static and free vibration analysis of the sandwich functionally graded nanoplates resting on elastic foundation,” J. Nanomater., vol. 2020, 2020, doi: 10.1155/2020/8786373
  • [18] M. Nouraei, P. Haghi, and F. Ebrahimi, “Modeling dynamic characteristics of the thermally affected embedded laminated nanocomposite beam containing multi-scale hybrid reinforcement,” Waves in Random and Complex Media, vol. 34, no. 5, pp. 4122–4151, Sep. 2024, doi: 10.1080/17455030.2021.1988758
  • [19] I. Esen and R. Özmen, “Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates,” Mech. Based Des. Struct. Mach., pp. 1–38, 2022, doi: 10.1080/15397734.2022.2152045
  • [20] M. Sobhy, “Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions,” Compos. Struct., vol. 99, pp. 76–87, 2013, doi: 10.1016/j.compstruct.2012.11.018
  • [21] X. Yin, R. Song, Y. Song and G. Yin, “A new cross-section layout method and geometrical parameter optimization for floor beams of rack car body considering modal factors,” Struct. Multidisc. Optim., vol. 67, no. 72, 2024, doi: 10.1007/s00158-024-03794-y

Analysis of the Vibration of Sandwich Plates with Auxetic and Honeycomb Core Layers used in Rail Vehicles

Year 2025, Issue: 21, 155 - 167, 31.01.2025
https://doi.org/10.47072/demiryolu.1603016

Abstract

This paper presents free vibration analyses of sandwich plates with auxetic, and honeycomb core layers based on first order shear deformation theory (FSDT) and finite element method (FEM). The proposed plates are made of Al 6005A-T6 aluminum alloy, which is one of the most widely used materials in the construction of railway car bodies, and the auxetic or honeycomb core layer is placed between the surface layers made of the same aluminum alloy. Hamilton's principle is used for the equations of motion of the sandwich plates and Navier's method is applied for their solutions. Two different porosity structures, four different porosity ratios, three different aspect ratios, three different core layer/height ratios and four different boundary conditions were used in the solutions and the effects of these parameters on free vibration were analyzed. It is determined that the porosity structure, porosity ratio, aspect ratio, core layer/height ratio and boundary conditions significantly affect the dynamic behavior of the sandwich plate.

References

  • [1] F. Arifurrahman, B. A. Budiman, and M. Aziz, “On the lightweight structural design for electric road and railway vehicles using fiber reinforced polymer composites,” Int. J. Sustain. Transp. Technol., vol. 1, no. 1, pp. 21–29, Apr. 2018, doi: 10.31427/IJSTT.2018.1.1.4
  • [2] M. Nagai, H. Yoshida, T. Tohtake, and Y. Suzuki, “Coupled vibration of passenger and lightweight car-body in consideration of human-body biomechanics,” Veh. Syst. Dyn., vol. 44, no. 1, pp. 601–611, Jan. 2006, doi: 10.1080/00423110600879361
  • [3] M. Khadem Sameni and A. Moradi, “Railway capacity: A review of analysis methods,” J. Rail Transp. Plan. Manag., vol. 24, p. 100357, Dec. 2022, doi: 10.1016/j.jrtpm.2022.100357
  • [4] Z. Wu et al., “Structural integrity issues of additively manufactured railway components: Progress and challenges,” Eng. Fail. Anal., vol. 149, p. 107265, Jul. 2023, doi: 10.1016/j.engfailanal.2023.107265
  • [5] A. Önder and M. Robinson, “Investigating the feasibility of a new testing method for GFRP/polymer foam sandwich composites used in railway passenger vehicles,” Compos. Struct., vol. 233, p. 111576, Feb. 2020, doi: 10.1016/j.compstruct.2019.111576
  • [6] A. Sakly, A. Laksimi, H. Kebir, and S. Benmedakhen, “Experimental and modelling study of low velocity impacts on composite sandwich structures for railway applications,” Eng. Fail. Anal., vol. 68, pp. 22–31, Oct. 2016, doi: 10.1016/j.engfailanal.2016.03.001
  • [7] V. Sharma et al., “Multi-criteria decision making methods for selection of lightweight material for railway vehicles,” Materials, vol. 16, no. 1, p. 368, Dec. 2022, doi: 10.3390/ma16010368
  • [8] O. F. Hosseinabadi and M. R. Khedmati, “A review on ultimate strength of aluminum structural elements and systems for marine applications,” Ocean Eng., vol. 232, p. 109153, Jul. 2021, doi: 10.1016/j.oceaneng.2021.109153
  • [9] X. Sun, X. Han, C. Dong, and X. Li, “Applications of aluminum alloys in rail transportation,” Advanced Aluminum Composites and Alloys, L. A. Dobrzański, Ed. Rijeka: IntechOpen, 2021, doi: 10.5772/intechopen.96442
  • [10] Y. Zhao, Z. Yang, T. Yu, and D. Xin, “Mechanical properties and energy absorption capabilities of aluminum foam sandwich structure subjected to low-velocity impact,” Constr. Build. Mater., vol. 273, p. 121996, 2021, doi: 10.1016/j.conbuildmat.2020.121996
  • [11] H. Junaedi, T. Khan, and T. A. Sebaey, “Characteristics of carbon-fiber-reinforced polymer face sheet and glass-fiber-reinforced rigid polyurethane foam sandwich structures under flexural and compression tests,” Materials (Basel)., vol. 16, no. 14, 2023, doi: 10.3390/ma16145101
  • [12] V. Pourriahi, M. Heidari-Rarani, and A. T. Isfahani, “Influence of geometric parameters on free vibration behavior of an aluminum honeycomb core sandwich beam using experimentally validated finite element models,” J. Sandw. Struct. & Mater., vol. 24, no. 2, pp. 1449–1469, 2022, doi: 10.1177/10996362211053633
  • [13] V. S. Sokolinsky, H. F. Von Bremen, J. A. Lavoie, and S. R. Nutt, “Analytical and experimental study of free vibration response of soft-core sandwich beams,” J. Sandw. Struct. & Mater., vol. 6, no. 3, pp. 239–261, 2004, doi: 10.1177/1099636204034634
  • [14] A. Monti, A. El Mahi, Z. Jendli, and L. Guillaumat, “Experimental and finite elements analysis of the vibration behavior of a bio-based composite sandwich beam,” Compos. Part B Eng., vol. 110, pp. 466–475, 2017, doi: 10.1016/j.compositesb.2016.11.045
  • [15] F. Li and W. Yuan, “Free vibration and sound insulation of functionally graded honeycomb sandwich plates,” J. Sandw. Struct. & Mater., vol. 24, no. 1, pp. 565–600, 2022, doi:10.1177/10996362211020440
  • [16] M. Nouraei, V. Zamani and Ö. Civalek, “Vibration of smart sandwich plate with an auxetic core and dual-FG nanocomposite layers integrated with piezoceramic actuators,” Compos. Struct., vol. 315, vol. 315, pp. 117014, Feb. 2023, doi: 10.1016/j.compstruct.2023.117014
  • [17] V. K. Tran, T. T. Tran, M. Van Phung, Q. H. Pham, and T. Nguyen-Thoi, “A finite element formulation and nonlocal theory for the static and free vibration analysis of the sandwich functionally graded nanoplates resting on elastic foundation,” J. Nanomater., vol. 2020, 2020, doi: 10.1155/2020/8786373
  • [18] M. Nouraei, P. Haghi, and F. Ebrahimi, “Modeling dynamic characteristics of the thermally affected embedded laminated nanocomposite beam containing multi-scale hybrid reinforcement,” Waves in Random and Complex Media, vol. 34, no. 5, pp. 4122–4151, Sep. 2024, doi: 10.1080/17455030.2021.1988758
  • [19] I. Esen and R. Özmen, “Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates,” Mech. Based Des. Struct. Mach., pp. 1–38, 2022, doi: 10.1080/15397734.2022.2152045
  • [20] M. Sobhy, “Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions,” Compos. Struct., vol. 99, pp. 76–87, 2013, doi: 10.1016/j.compstruct.2012.11.018
  • [21] X. Yin, R. Song, Y. Song and G. Yin, “A new cross-section layout method and geometrical parameter optimization for floor beams of rack car body considering modal factors,” Struct. Multidisc. Optim., vol. 67, no. 72, 2024, doi: 10.1007/s00158-024-03794-y
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Dynamics, Vibration and Vibration Control
Journal Section Article
Authors

Fatih Pehlivan 0000-0003-2675-6124

Kerim Gökhan Aktaş 0000-0002-8076-6799

Publication Date January 31, 2025
Submission Date December 17, 2024
Acceptance Date January 9, 2025
Published in Issue Year 2025 Issue: 21

Cite

IEEE F. Pehlivan and K. G. Aktaş, “Raylı Araçlarda Kullanılan Auxetic ve Bal Peteği Çekirdek Katmanlı Sandviç Plakaların Titreşim Analizi”, Demiryolu Mühendisliği, no. 21, pp. 155–167, January 2025, doi: 10.47072/demiryolu.1603016.