Research Article
BibTex RIS Cite

ANTARKTİKA SEFERLERİNDE ARAŞTIRMA GEMİLERİNİN KARBON EMİSYONLARININ İSTATİSTİKSEL YAKLAŞIMLA BELİRLENMESİ

Year 2022, Volume: 4 Issue: 1, 25 - 43, 28.06.2022
https://doi.org/10.54410/denlojad.1079719

Abstract

Antarktika'da yapılan çalışmaların büyük çoğunluğu araştırma gemileri tarafından sağlanmaktadır. Bununla birlikte, araştırma gemilerinden kaynaklanan karbon emisyonlarının çevresel etkisine ilişkin veriler çok sınırlıdır. Bu çalışmada istatistiksel yöntemle iki farklı senaryo geliştirilerek Antarktika’da bilimsel amaçlı seferler yapan gemilerin emisyonlarının belirlenmesi ve daha sonra azaltılması için farklı yöntemlerin önerilmesi hedeflenmektedir. Araştırma gemisi ve uçakların yakıt tüketimi bu senaryolara göre hesaplandıktan sonra, literatürde yer alan emisyon faktörleri kullanılarak her senaryo için tüm kirletici gazların emisyon miktarları tahmin edilmiştir. İlk senaryoda, Avrupa'dan Antarktika'nın batısına sadece deniz yolu ile bilimsel seferler yapıldığı varsayılarak emisyon hesaplamaları yapılmıştır. İkinci senaryoda ise, aynı bölgeye hava yolu ile deniz yolu entegre bir şekilde kullanıldığı varsayılarak hesaplama yapılmıştır. Yalnızca deniz yolu kullanılan birinci senaryoda toplam 2143 ton CO2 emisyonu hesaplanırken, bunun %60’ının açık deniz seyrinden, %38’inin demirde beklemeden ve %2’sinin ise buzlu sularda seyirden kaynaklandığı saptanmıştır. Araştırma seferinin havayolu ile entegre edildiği ikinci senaryoda ise 1218 ton CO2 emisyonu hesaplanmış olup, burada emisyonun %66’sı demirde beklemeden, %21’i uçuştan, %10 açık deniz seyrinden ve %3’ü buzlu sularda seyirden kaynaklanmaktadır. Hesaplamalar, havayolu ile araştırma gemisinin birlikte kullanımının bu çalışma kapsamında emisyonları %57 oranında azaltabileceğini göstermektedir. Sonuç olarak, bu çalışma, Antarktika'ya coğrafi olarak yakın olmayan ülkelerin araştırma gemilerini doğrudan Antarktika seferleri için göndermek yerine hava ve deniz yolunu birlikte kullanmaları durumunda karbon emisyonlarının Antarktika çevresi üzerindeki etkilerinin azalabileceğini göstermektedir.

References

  • AARI (2021). AARI-NIC-NMI pilot project on integrated sea ice analysis for Antarctic waters. http://ice.aari.aq/antice/2021/ Erişim tarihi: 11.03.2022.
  • Acomi, N. ve Acomi, O.C. (2014). Improving the voyage energy efficiency by using EEOI. Procedia Soc. Behav. Sci. 138, 531–536.
  • Bamber, J. & Aspinall, W. (2013). An expert judgement assessment of future sea level rise from the ice sheets. Nature Clim Change 3, 424–427.
  • Barua, R., Bardhan, N., & Banerjee, D. (2022). Impact of the Polar Ice Caps Melting on Ecosystems and Climates. Handbook of Research on Water Sciences and Society (pp. 722-735). IGI Global.
  • Cefic-ECTA (2011). Guidelines for Measuring and Managing CO2, Emission from Freight Transport Operations, Issue 1.
  • Chang, C.C. ve Jhang, C.W. (2016). Reducing speed and fuel transfer of the green flag incentive program in Kaohsiung port Taiwan. Transp. Res. Part D: Transp. Environ., 46, 1–10.
  • Chang, C.C. ve Wang, C.M. (2013). Energy conservation for international dry bulk carrier via vessel speed reduction. Energy Policy, 59, 710–715.
  • Chou, C-C., Hsu, H-P., Wang, C-N. ve Yang, T-L. (2021). Analysis of energy efficiencies of in-port ferries and island passenger-ships and improvement policies to reduce CO2 emissions, Marine Pollution Bulletin, 172.
  • Chown, S.L., Lee, J.E., Hughes, K.A., Barnes, J., Barrett, P.J., ..... Wall, D.H. (2012a). Challenges to the future conservation of the Antarctic. Science 337, 158–159.
  • Chown, S.L., Huiskes, A.H.L., Gremmen, N.J.M., Lee, J.E., Terauds, A., ….. Bergstrom, D.M. (2012b). Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl. Acad. Sci. 109, 4938–4943.
  • COMNAP (2017). COMNAP Antarctic Station Catalogue. https://www.comnap.aq/Members/Shared%20Documents/COMNAP_Antarctic_Station_Catalogue.pdf. Erişim tarihi: 11.03.2022.
  • Constable, A.J., Melbourne-Thomas, J., Corney, S.P., Arrigo, K.R., ….. Ziegler, P. (2014). Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biol. 20, 3004–3025.
  • Cosofret, D., Bunea, M. ve Popa, C. (2016). The Computing Methods for CO2 Emissions in Maritime Transports, International Conference Knowledge-Based Organization, 22, 3.
  • de Waal R.J.O., Bekker A., Heyns, P.S. (2018). Indirect load case estimation for propeller-ice moments from shaft line torque measurements, Cold Regions Science and Technology, Volume 151, Pages 237-248.
  • EMEP/EEA (2019). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/download. Erişim tarihi: 11.03.2022.
  • Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315(6016), 207-210.
  • Farreny, R., Oliver-Solà, J., Lamers, M., Amelung, B., Gabarrell, X., Rieradevall, J., Boada, M., Benayas, J. (2011). Carbon dioxide emissions of Antarctic tourism. Antarctic Science, 23(6), 556-566.
  • Gamo T. (1999). Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestern Pacific' Japan Sea. Geophysical Research Letters, Vol. 26, No. 20, Pages 3137-3140.
  • ICAO (2018). ICAO Carbon Emissions Calculator Methodology Version 11, https://www.icao.int/environmental-protection/CarbonOffset/Documents/Methodology%20ICAO%20Carbon%20Calculator_v11-2018.pdf. Erişim tarihi: 11.03.2022.
  • IMO (2012). Resolution MEPC.212(63) Guidelines on the method of calculation of the attained energy efficiency design index (EEDI) for the new ships, MEPC 63/23, IMO London. https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.212(63).pdf. Erişim tarihi: 11.03.2022
  • IPCC (1996). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, p 1.98.
  • Khodayari A., Olsen S. C., Wuebbles D. J., Phoenix D. B. (2015). Aviation NOx-induced CH4 effect: Fixed mixing ratio boundary conditions versus flux boundary conditions, Atmospheric Environment, Volume 113, Pages 135-139.
  • Lamas, M.I. and Rodriguez, C.G. (2012). Emissions from Marine Engines and NOx Reduction Methods. Journal of Maritime Research, 9, 77-81.
  • Li, X., Sun, B., Guo, C., Du, W., Li, Y. (2020). Speed optimization of a container ship on a given route considering voluntary speed loss and emissions. Appl. Ocean Res. 94.
  • Lindstad, H., Jullumstrø, E., Sandaas, I. (2013). Reductions in cost and greenhouse gas emissions with new bulk ship designs enabled by the Panama Canal expansion. Energy Policy, 59, 341–349.
  • Molders, N., Gende, S., Pirhalla, M. (2013). Assessment of cruise–ship activity influences on emissions, air quality, and visibility in Glacier Bay National Park. Atmos. Pollut. Res., 4, 435–445.
  • Olsen, S. C., Brasseur, G. P., Wuebbles, D. J., Barrett, S. R. H., Dang, H., Eastham, S. D., Jacobson, M. Z., Khodayari, A., Selkirk, H., Sokolov, A., & Unger, N. (2013). Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane. Geophysical Research Letters, 40(22), 6004-6009.
  • Papaefthimiou, S., Maragkogianni, A., Andriosopoulos, K. (2016). Evaluation of cruise ships emissions in the Mediterranean basin: the case of Greek ports. Int. J. Sustain. Transp., 10 (10), 985–994.
  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., ….. Stieyenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature Journal, 399, 429 – 436.
  • Richter A., Eyring V., Burrows J.P., Bovensmann H., Lauer A., Sierk B., Crutzen P.J. (2004). Satellite measurements of NO2 from international shipping emissions. Geophys. Res. Lett., 31 (23).
  • Sun, X., Yan, X.P., Wu, B., Song, X. (2013). Analysis of the operational energy efficiency for inland river ships. Transp. Res. Part D: Transp. Environ. 22, 34–39.
  • Tichavska, M., ve Tovar, B. (2015). Port-city exhaust emission model: an application to cruise and ferry operations in Las Palmas port. Transp. Res. A, 78, 347–360.
  • Tin, T., Fleming, Z.L., Hughes, K.A., Ainley, D.G., Convey, P., ….. Snape, I., (2009). Impacts of local human activities on the Antarctic environment. Antarct. Sci. 21, 3–33.
  • Traut M., Larkin A., Anderson K., McGlade C., Sharmina M., Smith T. (2018). CO2 abatement goals for international shipping. Clim. Pol. pp. 1-10.
  • Trossman, D., Palter, J. (2021). Changing Ocean Currents. From Hurricanes to Epidemics. Global Perspectives on Health Geography. Springer, Cham. Pp 11-26.
  • Turner, J., Barrand, N.E., Bracegirdle, T.J., Convey, P., Hodgson, D.A., ….. Klepikov, A. (2014). Antarctic climate change and the environment: an update. Polar Rec., 50, 237–259.
  • Tzannatos, E. (2010). Ship emissions and their externalities for the port of Piraeus-Greece. Atmos. Environ., 44, 400–407.
  • Tzannatos, E., Papadimitriou, S., Koliousis, I. (2015). A techno-economic analysis of oil vs. natural gas operation for Greek island ferries. Int. J. Sustain. Transp., 9 (4), 272–281.
  • Vargas, C.A., Cuevas, L.A., Broitman, B.R. (2022). Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates. Nat. Clim. Chang. 12, 200–207.
  • Walsh K. J. E., McInnes K. L., McBride J. L., (2012). Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment, Global and Planetary Change, Volumes 80–81, Pages 149-164.
  • Wan, Z., Ji, S., Liu, Y., Zhang, Q., Chen, J., Wang, Q. (2020). Shipping emission inventories in China’s Bohai Bay, Yangtze River Delta, and Pearl River Delta in 2018. Mar. Pollut. Bull., 151.
  • Wartsila (2020). Wartsila 6L20 Product Guide. https://www.manualslib.com/manual/1177300/W-Rtsil-W-Rtsil-20.html?page=20#manual. Erişim tarihi: 11.03.2022.
  • Yang M-H. (2016). Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle. Energy, Vol 113, Pages 1109-1124.
  • Yau, P.S., Lee, S.C., Corbett, J.J., Wang, C.F., Cheng, Y., Ho, K.F. (2012). Estimation of exhaust emission from ocean-going vessels in Hong Kong. Sci. Total Environ., 431, 299–306.
  • Yusof, N.A., Masnoddin, M., Charles, J. (2022). Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress?. Polar Biol 45, 371–394.
  • Zis, T., North, R.J., Angeloudis, P., Ochieng, W.Y., Bell, M.G.H. (2014). Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports. Marit. Econ. Logist., 16 (4), 371–398.

DETERMINATION OF THE CARBON EMISSIONS OF RESEARCH VESSELS IN ANTARCTIC EXPEDITIONS WITH A STATISTICAL APPROACH

Year 2022, Volume: 4 Issue: 1, 25 - 43, 28.06.2022
https://doi.org/10.54410/denlojad.1079719

Abstract

The vast majority of studies carried out in Antarctica is provided by research vessels. However, data on the environmental impact of carbon emissions from research vessels are limited. In this study, it is aimed to develop two different scenarios with statistical methods, to determine the emissions of ships conducting scientific expeditions in Antarctica and to propose different methods to reduce the emissions. After calculating the fuel consumption of the research ship and aircraft according to these scenarios, the emission amounts of pollutant gases were estimated for each scenario using the emission factors in the literature. In the first scenario, emission calculations were made assuming that only scientific expeditions were made by sea from Europe to the west of Antarctica. In the second scenario, the calculation is made by assuming that the same region is used in an integrated way by air and sea transportation. A total of 2143 tons of CO2 emissions were calculated in the first scenario where only the sea route is used. 60%, 38% and 2% of the carbon emissions are due to open sea voyage, staying at anchor and ice navigation, respectively. In the second scenario, where the expedition is integrated with the airline, 1218 tons of CO2 emissions are calculated, where 66%, 21%, 10% and 3% of the emission are due to staying at anchor, flight, open sea voyage and ice navigation, respectively. Calculations show that the use of a research vessel along with the airline can reduce emissions by 57% in this study. In conclusion, this study shows that the effects of carbon emissions on the Antarctic environment can be reduced if countries that are not geographically close to Antarctica use air and sea transportation together, instead of sending research vessels directly for Antarctic expeditions.

References

  • AARI (2021). AARI-NIC-NMI pilot project on integrated sea ice analysis for Antarctic waters. http://ice.aari.aq/antice/2021/ Erişim tarihi: 11.03.2022.
  • Acomi, N. ve Acomi, O.C. (2014). Improving the voyage energy efficiency by using EEOI. Procedia Soc. Behav. Sci. 138, 531–536.
  • Bamber, J. & Aspinall, W. (2013). An expert judgement assessment of future sea level rise from the ice sheets. Nature Clim Change 3, 424–427.
  • Barua, R., Bardhan, N., & Banerjee, D. (2022). Impact of the Polar Ice Caps Melting on Ecosystems and Climates. Handbook of Research on Water Sciences and Society (pp. 722-735). IGI Global.
  • Cefic-ECTA (2011). Guidelines for Measuring and Managing CO2, Emission from Freight Transport Operations, Issue 1.
  • Chang, C.C. ve Jhang, C.W. (2016). Reducing speed and fuel transfer of the green flag incentive program in Kaohsiung port Taiwan. Transp. Res. Part D: Transp. Environ., 46, 1–10.
  • Chang, C.C. ve Wang, C.M. (2013). Energy conservation for international dry bulk carrier via vessel speed reduction. Energy Policy, 59, 710–715.
  • Chou, C-C., Hsu, H-P., Wang, C-N. ve Yang, T-L. (2021). Analysis of energy efficiencies of in-port ferries and island passenger-ships and improvement policies to reduce CO2 emissions, Marine Pollution Bulletin, 172.
  • Chown, S.L., Lee, J.E., Hughes, K.A., Barnes, J., Barrett, P.J., ..... Wall, D.H. (2012a). Challenges to the future conservation of the Antarctic. Science 337, 158–159.
  • Chown, S.L., Huiskes, A.H.L., Gremmen, N.J.M., Lee, J.E., Terauds, A., ….. Bergstrom, D.M. (2012b). Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl. Acad. Sci. 109, 4938–4943.
  • COMNAP (2017). COMNAP Antarctic Station Catalogue. https://www.comnap.aq/Members/Shared%20Documents/COMNAP_Antarctic_Station_Catalogue.pdf. Erişim tarihi: 11.03.2022.
  • Constable, A.J., Melbourne-Thomas, J., Corney, S.P., Arrigo, K.R., ….. Ziegler, P. (2014). Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biol. 20, 3004–3025.
  • Cosofret, D., Bunea, M. ve Popa, C. (2016). The Computing Methods for CO2 Emissions in Maritime Transports, International Conference Knowledge-Based Organization, 22, 3.
  • de Waal R.J.O., Bekker A., Heyns, P.S. (2018). Indirect load case estimation for propeller-ice moments from shaft line torque measurements, Cold Regions Science and Technology, Volume 151, Pages 237-248.
  • EMEP/EEA (2019). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/download. Erişim tarihi: 11.03.2022.
  • Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315(6016), 207-210.
  • Farreny, R., Oliver-Solà, J., Lamers, M., Amelung, B., Gabarrell, X., Rieradevall, J., Boada, M., Benayas, J. (2011). Carbon dioxide emissions of Antarctic tourism. Antarctic Science, 23(6), 556-566.
  • Gamo T. (1999). Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestern Pacific' Japan Sea. Geophysical Research Letters, Vol. 26, No. 20, Pages 3137-3140.
  • ICAO (2018). ICAO Carbon Emissions Calculator Methodology Version 11, https://www.icao.int/environmental-protection/CarbonOffset/Documents/Methodology%20ICAO%20Carbon%20Calculator_v11-2018.pdf. Erişim tarihi: 11.03.2022.
  • IMO (2012). Resolution MEPC.212(63) Guidelines on the method of calculation of the attained energy efficiency design index (EEDI) for the new ships, MEPC 63/23, IMO London. https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.212(63).pdf. Erişim tarihi: 11.03.2022
  • IPCC (1996). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, p 1.98.
  • Khodayari A., Olsen S. C., Wuebbles D. J., Phoenix D. B. (2015). Aviation NOx-induced CH4 effect: Fixed mixing ratio boundary conditions versus flux boundary conditions, Atmospheric Environment, Volume 113, Pages 135-139.
  • Lamas, M.I. and Rodriguez, C.G. (2012). Emissions from Marine Engines and NOx Reduction Methods. Journal of Maritime Research, 9, 77-81.
  • Li, X., Sun, B., Guo, C., Du, W., Li, Y. (2020). Speed optimization of a container ship on a given route considering voluntary speed loss and emissions. Appl. Ocean Res. 94.
  • Lindstad, H., Jullumstrø, E., Sandaas, I. (2013). Reductions in cost and greenhouse gas emissions with new bulk ship designs enabled by the Panama Canal expansion. Energy Policy, 59, 341–349.
  • Molders, N., Gende, S., Pirhalla, M. (2013). Assessment of cruise–ship activity influences on emissions, air quality, and visibility in Glacier Bay National Park. Atmos. Pollut. Res., 4, 435–445.
  • Olsen, S. C., Brasseur, G. P., Wuebbles, D. J., Barrett, S. R. H., Dang, H., Eastham, S. D., Jacobson, M. Z., Khodayari, A., Selkirk, H., Sokolov, A., & Unger, N. (2013). Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane. Geophysical Research Letters, 40(22), 6004-6009.
  • Papaefthimiou, S., Maragkogianni, A., Andriosopoulos, K. (2016). Evaluation of cruise ships emissions in the Mediterranean basin: the case of Greek ports. Int. J. Sustain. Transp., 10 (10), 985–994.
  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., ….. Stieyenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature Journal, 399, 429 – 436.
  • Richter A., Eyring V., Burrows J.P., Bovensmann H., Lauer A., Sierk B., Crutzen P.J. (2004). Satellite measurements of NO2 from international shipping emissions. Geophys. Res. Lett., 31 (23).
  • Sun, X., Yan, X.P., Wu, B., Song, X. (2013). Analysis of the operational energy efficiency for inland river ships. Transp. Res. Part D: Transp. Environ. 22, 34–39.
  • Tichavska, M., ve Tovar, B. (2015). Port-city exhaust emission model: an application to cruise and ferry operations in Las Palmas port. Transp. Res. A, 78, 347–360.
  • Tin, T., Fleming, Z.L., Hughes, K.A., Ainley, D.G., Convey, P., ….. Snape, I., (2009). Impacts of local human activities on the Antarctic environment. Antarct. Sci. 21, 3–33.
  • Traut M., Larkin A., Anderson K., McGlade C., Sharmina M., Smith T. (2018). CO2 abatement goals for international shipping. Clim. Pol. pp. 1-10.
  • Trossman, D., Palter, J. (2021). Changing Ocean Currents. From Hurricanes to Epidemics. Global Perspectives on Health Geography. Springer, Cham. Pp 11-26.
  • Turner, J., Barrand, N.E., Bracegirdle, T.J., Convey, P., Hodgson, D.A., ….. Klepikov, A. (2014). Antarctic climate change and the environment: an update. Polar Rec., 50, 237–259.
  • Tzannatos, E. (2010). Ship emissions and their externalities for the port of Piraeus-Greece. Atmos. Environ., 44, 400–407.
  • Tzannatos, E., Papadimitriou, S., Koliousis, I. (2015). A techno-economic analysis of oil vs. natural gas operation for Greek island ferries. Int. J. Sustain. Transp., 9 (4), 272–281.
  • Vargas, C.A., Cuevas, L.A., Broitman, B.R. (2022). Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates. Nat. Clim. Chang. 12, 200–207.
  • Walsh K. J. E., McInnes K. L., McBride J. L., (2012). Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment, Global and Planetary Change, Volumes 80–81, Pages 149-164.
  • Wan, Z., Ji, S., Liu, Y., Zhang, Q., Chen, J., Wang, Q. (2020). Shipping emission inventories in China’s Bohai Bay, Yangtze River Delta, and Pearl River Delta in 2018. Mar. Pollut. Bull., 151.
  • Wartsila (2020). Wartsila 6L20 Product Guide. https://www.manualslib.com/manual/1177300/W-Rtsil-W-Rtsil-20.html?page=20#manual. Erişim tarihi: 11.03.2022.
  • Yang M-H. (2016). Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle. Energy, Vol 113, Pages 1109-1124.
  • Yau, P.S., Lee, S.C., Corbett, J.J., Wang, C.F., Cheng, Y., Ho, K.F. (2012). Estimation of exhaust emission from ocean-going vessels in Hong Kong. Sci. Total Environ., 431, 299–306.
  • Yusof, N.A., Masnoddin, M., Charles, J. (2022). Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress?. Polar Biol 45, 371–394.
  • Zis, T., North, R.J., Angeloudis, P., Ochieng, W.Y., Bell, M.G.H. (2014). Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports. Marit. Econ. Logist., 16 (4), 371–398.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Maritime Engineering (Other)
Journal Section Araştırma Makaleleri
Authors

Efecan Özcan 0000-0002-3089-7395

Atilla Yılmaz 0000-0003-4215-8140

Osman Okur 0000-0002-5088-0224

Burcu Özsoy 0000-0003-4320-1796

Publication Date June 28, 2022
Submission Date March 31, 2022
Acceptance Date April 14, 2022
Published in Issue Year 2022 Volume: 4 Issue: 1

Cite

APA Özcan, E., Yılmaz, A., Okur, O., Özsoy, B. (2022). ANTARKTİKA SEFERLERİNDE ARAŞTIRMA GEMİLERİNİN KARBON EMİSYONLARININ İSTATİSTİKSEL YAKLAŞIMLA BELİRLENMESİ. Mersin Üniversitesi Denizcilik Ve Lojistik Araştırmaları Dergisi, 4(1), 25-43. https://doi.org/10.54410/denlojad.1079719

                                                          Mersin University Journal of Maritime and Logistics Research