Research Article
BibTex RIS Cite

Organik-inorganik hibrit nano çiçeklerin çemen (Trigonella foenum-graecum L.) tohum ekstresi kullanılarak sentezi ve anti-mikrobiyal özelliklerinin araştırılması

Year 2019, Volume: 36 Issue: 2, 159 - 167, 10.12.2019
https://doi.org/10.16882/derim.2019.549151
https://izlik.org/JA77CE37GE

Abstract



Bu çalışmada organik-inorganik hibrit nano çiçek
sentezi için organik bileşen olarak çemen (Trigonella
foenum-graecum
L.) otu tohum
ekstresi ve inorganik bileşen olarak Cu2+ iyonları kullanılarak
yeşil bir üretim metodu raporlanmıştır. Çemen tohum ekstresi kullanılarak
sentezlenmiş organik-inorganik hibrit nano çiçekler (TF-Cu2+ hNF);
 taramalı elektron mikroskobu (SEM), Enerji Dağılımlı Spektrometre (EDX),
X-ışını kırınımı (XRD) ve Kızılötesi spektroskopisi (FT-IR) yöntemleri
kullanılarak karakterize edilmiştir. TF-Cu2+ hNF’lerin elektron
mikroskop görüntüsünde morfolojisi oldukça düzgün dağılımlı ve küresel formda
olmak üzere yaklaşık 18
μm boyutunda
gözlenmiştir. TF-Cu2+
hNF’ler;
Pseudomonas aeruginosa and Haemophilus influenza
dışında Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus,
Bacillus cereus, Salmonella typhi ve Escherichia coli türlerine
karşı 1-10 µg ml-1 aralığında ve kullanılan antibiyotikler
ile karşılaştırıldığında yüksek düzeyde
anti-mikrobiyal özellik göstermiştir.
Ancak hem TF-Cu2+ hNF’ler hemde serbest TF ekstresi, Candida
albicans
ve Candida glabrata türlerine karşı antifungal aktivite
göstermemiştir. Yapılan bu çalışma
çemen ekstresi içeren organik-inorganik hibrit nano çiçeklerin test edilen
patojen suşlar ile gelişen mikrobiyal enfeksiyonlar için terapötik bir ajan
olarak kullanılabileceğini ve ilaç direncinin üstesinden gelme potansiyeline
sahip olduğunu ortaya koymaktadır.



References

  • Altinkaynak, C., Yilmaz, I., Koksal, Z., Özdemir, H., Ocsoy, I., & Özdemir, N. (2016a). Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. International Journal of Biological Macromolecules, 84:402-409.
  • Altinkaynak, C., Tavlasoglu, S., Özdemir, N., & Ocsoy, I. (2016b). A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme and Microbial Technology, 93-94:105-112.
  • Ahmed, S., Ahmad, M., Swami, B.L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1):17–28.
  • Aman, S., Naim, A., Siddiqi, R., & Naz, S. (2014). Antimicrobial polyphenols from small tropical fruits, tea and spice oilseeds. Food Science and Technology International, 20(4):241-51.
  • Amin, A., Alkaabi, A., Al-Falasi, S., & Daoud, S.A. (2005). Chemopreventive activities of Trigonella foenum graecum (Fenugreek) against breast cancer. Cell Biology International, 29:687-694.
  • Ariza-Avidad, M., Salinas-Castillo, A., & Capitán-Vallvey, L.F. (2016). A 3D mPAD based on a multi-enzyme organic–inorganic hybrid nanoflower reactor. Biosensors and Bioelectronics, 77:51–55.
  • Baldemir, A., Kose, N.B., Ildız, N., İlgün, S., Yusufbeyoğlu, S., Yılmaz, V., & Ocsoy, I. (2017). Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity. RSC Advances, 7:44303-44308.
  • Banerjee, M.,Sharma, S.,Chattopadhyay, A., & Ghosh, SS. (2011). Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale, 3(11):5120-5125.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Analytical Biochemistry, 72:248–254.
  • CLSI (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-third ed. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, USA.
  • CLSI (2009). Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline- second ed. CLSI document M44- A2. Clinical and Laboratory Standards Institute, Wayne, USA.
  • CLSI (2012). Performance standards for antimicrobial susceptibility testing. Twenty-second informational supplement ed. CLSI document M100-S22. Clinical and Laboratory Standards Institute, Wayne, USA.
  • El-Kamali, H.H., & El-Karim. E.M.A. (2009). Evaluation of antibacterial activity of some medicinal plants used in Sudanese traditional medicine for treatment of wound infections. Academic Journal of Plant Sciences, 2(4):246-251.
  • Feyzi, S., Varidi, M., Zare, F., & Varidi, M.J. (2015). Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties, Journal of the Science of Food and Agriculture, 95(15):3165-3176.
  • Ge, J., Lei, J., & Zare, R.N. (2012). Protein–inorganic hybrid nanoflowers, Nature Nanotechnology, 7:428-432.
  • Goyal, S., Gupta, N., Kumar, A., Chatterjee, S., & Nimesh, S. (2018). Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum seed extract. IET nanobiotechnology, 12(4):526-533.
  • Huang, Y., Ran, X., Lin, Y., Ren, J., & Qu, X. (2015). Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chemistry Communication, 51(21):4386-4389.
  • Ildiz, N., Baldemir, A., Altinkaynak, C., Özdemir, N., Yilmaz, V., & Ocsoy, I., (2017). Self-assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology, 102:60-66.
  • Karatoprak, G.Ş., Aydin, G., Altinsoy, B., Altinkaynak, C., Koşar, M., & Ocsoy, I. (2017). The effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities. Enzyme and Microbial Technology, 97:21-26.
  • Kruk, T., Szczepanowicz, K., Stefanska, J., Socha, R.P., & Warszynski, P. (2015). Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and surfaces B: Biointerfaces, 128:17-22.
  • Lee, S. W., Cheon, S.A., Kim, M.I., & Park, T.J. (2015). Organic-inorganic hybrid nanoflowers:types, characterictics, and future prospects. Journal of Nanobiotechnology, 13:54.
  • Liang, L., Fei, X., Li, Y., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Hierarchical assembly of enzyme-inorganic composite materials with extremely high enzyme activity. RSC Advances, 5(117):96997-97002.
  • Mittal, AK.,Chisti, Y., & Banerjee, UC. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2):346-356.
  • Moradi Kor, N., Bagher Didarshetaban, M., & Saeid Pour, H.R. (2013). Fenugreek (Trigonella foenum-graecum L.) as a valuable medicinal plant. International journal of Advanced Biological and Biomedical Research, 1(8):922-931.
  • Nadagouda, M.N., Iyanna, N., Lalley, J., Han, C., Dionysiou, DD., & Varma, R.S. (2014). Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustainable Chemistry & Engineering, 2(7):1717–1723.
  • NCCLS (2000). Approved Standard: M7-A5. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 5th Ed., National Committee for Clinical Laboratory Standards, Wayne, USA.
  • Olli, S., & Kirti, P.B. (2006). Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L., Journal of Biochemistry and Molecular Biology, 39(3):278-283.
  • Patel, D.K., & Dhanabal, S.P. (2013). Development and optimization of bioanalytical parameters for the standardization of Trigonella foenum-graecum, Journal of Acute Disease, 2(2):137-139.
  • Phull, A.R, Abbas, Q., Ali, A., Raza, H., Kim, S.J., Zia, M., & Haq, I. (2016). Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences, 2(1):31-36.
  • Singh, P., Vishwakarma, S.P., & Singh, R.L. (2014). Antioxidant, oxidative DNA damage protective and antimicrobial activities of the plant Trigonella foenum‐graecum. Journal of the Science of Food and Agriculture, 94(12):2497-2504.
  • Somturk, B., Hancer, M., Ocsoy, I., & Özdemir, N. (2015). Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Transactions, 44:13845-13852.
  • Somturk, B., Yilmaz, I., Altinkaynak, C., Karatepe, A., Ozdemir, N., & Ocsoy, I. (2016). Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme and Microbial Technology, 86:134-142.
  • Subhapriya, S. & Gomathipriya, P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis, 116:215-220.
  • Sun, J., Ge, J., Liu, W., Lan, M., Zhang, H., Wang, P., Wang, Y., & Niu, Z. (2014). Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale, 6:255-262.
  • Thawari, A.G., & Rao, C.P. (2016) Peroxidase-like catalytic activity of copper-mediated protein–inorganic hybrid nanoflowers and nanofibers of β-lactoglobulin and α-lactalbumin: synthesis, spectral characterization, microscopic features, and catalytic activity. ACS Applied Material & Interfaces, 8(16):10392–10402.
  • Wu, Z., Li, X., Li, F., Yue, H., He, C., Xie, F., & Wang, Z. (2014). Enantioselective transesterification of (R, S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Advances, 4:33998-34002.
  • Yin, Y., Xiao, Y., Lin, G., Xiao, Q., Lin, Z., & Cai, Z. (2015). An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. Jorunal of Materials Chemistry B, 3:2295-2300.
  • Yu, Y., Fei, X., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification. Colloids and Surfaces B Biointerfaces, 130:299-304.
  • Zhang, B., Li, P., Zhang, H., Li, X., Tian, L., Wang, H., Chen, X., Ali, N., Ali, Z., & Zhang, Q. (2016). Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions. Applied Surface Science, 366:328–338.

Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity

Year 2019, Volume: 36 Issue: 2, 159 - 167, 10.12.2019
https://doi.org/10.16882/derim.2019.549151
https://izlik.org/JA77CE37GE

Abstract



Herein
we report a green method for the synthesis of organic-inorganic hybrid
nanoflowers using a Trigonella
foenum-graecum
L. (TF) (Fenugreek seeds) extracts as an organic part and
copper ions acting as an inorganic part. The organic-inorganic hybrid
nanoflowers using TF seed extract (TF-Cu2+ hNFs) were characterized
by SEM, XRD, EDX and FTIR. The morphology of the TF-Cu2+ hNFs was
quite spherical and monodisperse with
18μm size. The TF-Cu2+
hNF exhibited the effective anti-bacterial activity against Enterococcus
faecium, Enterococcus faecalis, Staphylococcus aureus,
Bacillus cereus,
Salmonella typhi
and Escherichia coli at 1-10 µg ml-1
concentrations except against Pseudomonas aeruginosa and Haemophilus
influenza
. However, both TF-Cu2+ hNFs and free TF extracts
showed any antifungal activities against Candida albicans or Candida
glabrata
. The study revealed that TF-Cu2+ hNFs could be used as
a therapeutic agent for microbial infections and has the potential to overcome
drug resistance.



References

  • Altinkaynak, C., Yilmaz, I., Koksal, Z., Özdemir, H., Ocsoy, I., & Özdemir, N. (2016a). Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. International Journal of Biological Macromolecules, 84:402-409.
  • Altinkaynak, C., Tavlasoglu, S., Özdemir, N., & Ocsoy, I. (2016b). A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme and Microbial Technology, 93-94:105-112.
  • Ahmed, S., Ahmad, M., Swami, B.L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1):17–28.
  • Aman, S., Naim, A., Siddiqi, R., & Naz, S. (2014). Antimicrobial polyphenols from small tropical fruits, tea and spice oilseeds. Food Science and Technology International, 20(4):241-51.
  • Amin, A., Alkaabi, A., Al-Falasi, S., & Daoud, S.A. (2005). Chemopreventive activities of Trigonella foenum graecum (Fenugreek) against breast cancer. Cell Biology International, 29:687-694.
  • Ariza-Avidad, M., Salinas-Castillo, A., & Capitán-Vallvey, L.F. (2016). A 3D mPAD based on a multi-enzyme organic–inorganic hybrid nanoflower reactor. Biosensors and Bioelectronics, 77:51–55.
  • Baldemir, A., Kose, N.B., Ildız, N., İlgün, S., Yusufbeyoğlu, S., Yılmaz, V., & Ocsoy, I. (2017). Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity. RSC Advances, 7:44303-44308.
  • Banerjee, M.,Sharma, S.,Chattopadhyay, A., & Ghosh, SS. (2011). Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale, 3(11):5120-5125.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Analytical Biochemistry, 72:248–254.
  • CLSI (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-third ed. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, USA.
  • CLSI (2009). Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline- second ed. CLSI document M44- A2. Clinical and Laboratory Standards Institute, Wayne, USA.
  • CLSI (2012). Performance standards for antimicrobial susceptibility testing. Twenty-second informational supplement ed. CLSI document M100-S22. Clinical and Laboratory Standards Institute, Wayne, USA.
  • El-Kamali, H.H., & El-Karim. E.M.A. (2009). Evaluation of antibacterial activity of some medicinal plants used in Sudanese traditional medicine for treatment of wound infections. Academic Journal of Plant Sciences, 2(4):246-251.
  • Feyzi, S., Varidi, M., Zare, F., & Varidi, M.J. (2015). Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties, Journal of the Science of Food and Agriculture, 95(15):3165-3176.
  • Ge, J., Lei, J., & Zare, R.N. (2012). Protein–inorganic hybrid nanoflowers, Nature Nanotechnology, 7:428-432.
  • Goyal, S., Gupta, N., Kumar, A., Chatterjee, S., & Nimesh, S. (2018). Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum seed extract. IET nanobiotechnology, 12(4):526-533.
  • Huang, Y., Ran, X., Lin, Y., Ren, J., & Qu, X. (2015). Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chemistry Communication, 51(21):4386-4389.
  • Ildiz, N., Baldemir, A., Altinkaynak, C., Özdemir, N., Yilmaz, V., & Ocsoy, I., (2017). Self-assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology, 102:60-66.
  • Karatoprak, G.Ş., Aydin, G., Altinsoy, B., Altinkaynak, C., Koşar, M., & Ocsoy, I. (2017). The effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities. Enzyme and Microbial Technology, 97:21-26.
  • Kruk, T., Szczepanowicz, K., Stefanska, J., Socha, R.P., & Warszynski, P. (2015). Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and surfaces B: Biointerfaces, 128:17-22.
  • Lee, S. W., Cheon, S.A., Kim, M.I., & Park, T.J. (2015). Organic-inorganic hybrid nanoflowers:types, characterictics, and future prospects. Journal of Nanobiotechnology, 13:54.
  • Liang, L., Fei, X., Li, Y., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Hierarchical assembly of enzyme-inorganic composite materials with extremely high enzyme activity. RSC Advances, 5(117):96997-97002.
  • Mittal, AK.,Chisti, Y., & Banerjee, UC. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2):346-356.
  • Moradi Kor, N., Bagher Didarshetaban, M., & Saeid Pour, H.R. (2013). Fenugreek (Trigonella foenum-graecum L.) as a valuable medicinal plant. International journal of Advanced Biological and Biomedical Research, 1(8):922-931.
  • Nadagouda, M.N., Iyanna, N., Lalley, J., Han, C., Dionysiou, DD., & Varma, R.S. (2014). Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustainable Chemistry & Engineering, 2(7):1717–1723.
  • NCCLS (2000). Approved Standard: M7-A5. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 5th Ed., National Committee for Clinical Laboratory Standards, Wayne, USA.
  • Olli, S., & Kirti, P.B. (2006). Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L., Journal of Biochemistry and Molecular Biology, 39(3):278-283.
  • Patel, D.K., & Dhanabal, S.P. (2013). Development and optimization of bioanalytical parameters for the standardization of Trigonella foenum-graecum, Journal of Acute Disease, 2(2):137-139.
  • Phull, A.R, Abbas, Q., Ali, A., Raza, H., Kim, S.J., Zia, M., & Haq, I. (2016). Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences, 2(1):31-36.
  • Singh, P., Vishwakarma, S.P., & Singh, R.L. (2014). Antioxidant, oxidative DNA damage protective and antimicrobial activities of the plant Trigonella foenum‐graecum. Journal of the Science of Food and Agriculture, 94(12):2497-2504.
  • Somturk, B., Hancer, M., Ocsoy, I., & Özdemir, N. (2015). Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Transactions, 44:13845-13852.
  • Somturk, B., Yilmaz, I., Altinkaynak, C., Karatepe, A., Ozdemir, N., & Ocsoy, I. (2016). Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme and Microbial Technology, 86:134-142.
  • Subhapriya, S. & Gomathipriya, P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis, 116:215-220.
  • Sun, J., Ge, J., Liu, W., Lan, M., Zhang, H., Wang, P., Wang, Y., & Niu, Z. (2014). Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale, 6:255-262.
  • Thawari, A.G., & Rao, C.P. (2016) Peroxidase-like catalytic activity of copper-mediated protein–inorganic hybrid nanoflowers and nanofibers of β-lactoglobulin and α-lactalbumin: synthesis, spectral characterization, microscopic features, and catalytic activity. ACS Applied Material & Interfaces, 8(16):10392–10402.
  • Wu, Z., Li, X., Li, F., Yue, H., He, C., Xie, F., & Wang, Z. (2014). Enantioselective transesterification of (R, S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Advances, 4:33998-34002.
  • Yin, Y., Xiao, Y., Lin, G., Xiao, Q., Lin, Z., & Cai, Z. (2015). An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. Jorunal of Materials Chemistry B, 3:2295-2300.
  • Yu, Y., Fei, X., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification. Colloids and Surfaces B Biointerfaces, 130:299-304.
  • Zhang, B., Li, P., Zhang, H., Li, X., Tian, L., Wang, H., Chen, X., Ali, N., Ali, Z., & Zhang, Q. (2016). Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions. Applied Surface Science, 366:328–338.
There are 39 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Cevahir Altınkaynak 0000-0003-0082-8521

Nilay Ildız This is me 0000-0002-3799-856X

Ayşe Baldemir 0000-0003-2473-4837

Nalan Özdemir 0000-0002-8930-5198

Vedat Yılmaz This is me 0000-0002-1719-1638

İsmail Öçsoy 0000-0002-5991-3934

Publication Date December 10, 2019
DOI https://doi.org/10.16882/derim.2019.549151
IZ https://izlik.org/JA77CE37GE
Published in Issue Year 2019 Volume: 36 Issue: 2

Cite

APA Altınkaynak, C., Ildız, N., Baldemir, A., Özdemir, N., Yılmaz, V., & Öçsoy, İ. (2019). Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim, 36(2), 159-167. https://doi.org/10.16882/derim.2019.549151
AMA 1.Altınkaynak C, Ildız N, Baldemir A, Özdemir N, Yılmaz V, Öçsoy İ. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim. 2019;36(2):159-167. doi:10.16882/derim.2019.549151
Chicago Altınkaynak, Cevahir, Nilay Ildız, Ayşe Baldemir, Nalan Özdemir, Vedat Yılmaz, and İsmail Öçsoy. 2019. “Synthesis of Organic-Inorganic Hybrid Nanoflowers Using Trigonella Foenum-Graecum Seed Extract and Investigation of Their Anti-Microbial Activity”. Derim 36 (2): 159-67. https://doi.org/10.16882/derim.2019.549151.
EndNote Altınkaynak C, Ildız N, Baldemir A, Özdemir N, Yılmaz V, Öçsoy İ (December 1, 2019) Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim 36 2 159–167.
IEEE [1]C. Altınkaynak, N. Ildız, A. Baldemir, N. Özdemir, V. Yılmaz, and İ. Öçsoy, “Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity”, Derim, vol. 36, no. 2, pp. 159–167, Dec. 2019, doi: 10.16882/derim.2019.549151.
ISNAD Altınkaynak, Cevahir - Ildız, Nilay - Baldemir, Ayşe - Özdemir, Nalan - Yılmaz, Vedat - Öçsoy, İsmail. “Synthesis of Organic-Inorganic Hybrid Nanoflowers Using Trigonella Foenum-Graecum Seed Extract and Investigation of Their Anti-Microbial Activity”. Derim 36/2 (December 1, 2019): 159-167. https://doi.org/10.16882/derim.2019.549151.
JAMA 1.Altınkaynak C, Ildız N, Baldemir A, Özdemir N, Yılmaz V, Öçsoy İ. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim. 2019;36:159–167.
MLA Altınkaynak, Cevahir, et al. “Synthesis of Organic-Inorganic Hybrid Nanoflowers Using Trigonella Foenum-Graecum Seed Extract and Investigation of Their Anti-Microbial Activity”. Derim, vol. 36, no. 2, Dec. 2019, pp. 159-67, doi:10.16882/derim.2019.549151.
Vancouver 1.Altınkaynak C, Ildız N, Baldemir A, Özdemir N, Yılmaz V, Öçsoy İ. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim [Internet]. 2019 Dec. 1;36(2):159-67. Available from: https://izlik.org/JA77CE37GE

Cited By