BibTex RIS Cite

KİMYA ÖĞRETMEN ADAYLARINA GÖRE KAVRAM YANILGILARININ NEDENLERİ

Year 2013, Issue: 35, 59 - 95, 01.12.2013

Abstract

Bu çalışmada, öğrencilerin sahip oldukları kavram yanılgılarının nedenlerini belirlemek amacıyla öğretmen adaylarının görüşleri alınmıştır. Çalışmada veriler uzman görüşüne başvurularak hazırlanmış olan görüşme formu ve açık uçlu sorularla toplanılmıştır. Çalışmada elde edilen veriler NVivo nitel veri analiz programı ile analiz edilmiştir. Çalışmada kavram yanılgılarının nedenleri belirlenmeye çalışıldığından nitel araştırma desenlerinden araştırmanın doğasına uygun olan olgubilim (phenomenology) deseni kullanılmıştır. Öğrencilerin kavram yanılgılarının nedenlerinin tespit edilmesinde kodlama stratejisi tümevarımsal bir süreç izlenerek yapılmıştır. Çalışmada elde edilen sonuçlara göre kimya öğretmen adayları kavram yanılgılarının nedenleri arasında öğrencilerin kendileri, öğretmenler, öğrenme/çalışma ortamları ve aile, medya ve arkadaş faktörlerini göstermişlerdir.

References

  • Acar Sesen, B. ve İnce, E. (2010). Internet as a source of misconception: “Radiation and radioactivity”. TOJET: The Turkish Online Journal of Educational Technology, 9(4), 94- 100.
  • Al khawaldeh, S. A., & Al Olaimat, A. M. (2010). The contribution of conceptual change texts accompanied by concept mapping to eleventh-grade students understanding of cellular respiration concepts. Journal of Science Education and Technology, 19(2), 115-125.
  • Altınkaynak Yaylacı, Ö., Yamak, H. ve Kavak, N. (2011). Examining pre-service science teachers’ opinions about holistic approach in science: Electrical energy example. Procedia Social and Behavioral Sciences, 15, 2764–2770.
  • Andersson, B. (1986). Pupils' explanations of some aspects of chemical reactions. Science Education, 70(5), 549-563.
  • Andre, T., & Ding, P. (1991). Student misconceptions, declarative knowledge, stimulus conditions, and problem solving in basic electricity. Contemporary Educational Psychology, 16,303–313.
  • Bar, V., & Travis, A. (1991). Children's views concerning phase changes. Journal of Research in Science Teaching, 28(4), 363-382.
  • Barras, R. (1984). Some misconceptions and misunderstandings perpetuated by teachers and textbooks of biology. Journal of Biological Education, 18, 201-206.
  • Beaty, W. J. (1987). The origin of misconceptions in optics. American Journal of Physics, 55, 872-873.
  • Cansüngü Koray, Ö. ve Bal, Ş. (2002). Fen öğretiminde kavram yanılgıları ve kavramsal değişim stratejisi. Kastamonu Eğitim Dergisi, 10(1), 83-90.
  • Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive Models of Science: Minnesota Studies in the Philosophy of Science, (pp. 129-186). University of Minnesota Press: Minneapolis, MN.
  • Chiapetta, E., & McBride, J. (1980). Exploring the effects of general remediation on ninth-graders' achievement of the mole concept. Science Education, 64(5), 609-614.
  • Chiu, M. H. (2005). A national survey of students’ conceptions in chemistry in Taiwan. Chemical Education International, 6 (1) , Retrieved December 28, 2011, from http://old.iupac.org/publications/cei/vol6/07_Chiu.pdf.
  • Cho, H. H., Kahle, J. B., & Nordland, F. H. (1985). An investigation of high school biology textbooks as sources of misconceptions and difficulties in genetics and some suggestions for teaching genetics. Science Education, 69(5), 707–719.
  • Coştu, B., Ayas, A. ve Ünal,S. (2007). Kavram yanılgıları ve olası nedenleri: Kaynama kavramı. Kastamonu Eğitim Dergisi, 15(1), 123-136.
  • Creswell, J. W. (2007). Research design: Qualitative and quantitative approaches. (Second Edition). Thousand Oaks, CA: Sage.
  • Deshmukh, N. D., & Deshmukh, V. M. (2007, February). A study of students' misconceptions in biology at the secondary school level. International conference to review research in Science, Technology and Mathematics Education, Homi Bhabha Centre for Science Education, TIFR, Mumbai, India.
  • Deshmukh, N. D., & Deshmukh, V. M. (2011, January). Textbook: A source of students’ mısconceptıons at the secondary school level. Fourth international conference to review research on Science, Technology and Mathematics Education, Homi Bhabha Centre for Science Education, TIFR, Mumbai, India.
  • Dikmenli, M. ve Cardak, O. (2004). Lise 1 Biyoloji Ders Kitaplarındaki Kavram Yanılgıları Üzerine Bir Araştırma. Eurasian Journal of Educational Research, 17, 130-141.
  • Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11,481-490.
  • Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of the literature related to concept development in adolescent science students. Studies in Science Education, 5, 61– 84.
  • Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching, 29, 121–142.
  • Garnett, P.J., Garnett, P.J., & Treagust, D.F. (1990). Implications of research of students’ understanding of electrochemistry for improving science curricula and classroom practice. International Journal of Science Education, 12, 147–156.
  • Gilbert, J. K., & Osborne, R. J. (1980). ‘I understand, but I don’t get it”: Some problems of learning science. School Science Review, 61(218), 664–674.
  • Gilbert, J. K., Watts, M. D., & Osborne, R. J. (1982). Students’ conceptions of ideas in mechanics. Physics Education, 17, 62–66.
  • Groenewald, T. (2004). A phenomenological research design illustrated. International Journal http://www.ualberta.ca/~iiqm/backissues/3_1/pdf/groenewald.pdf. Methods. 3(1). Retrieved January 16, 2012, from
  • Häußler, P., Bündner, W., Duit, R., Gräber, W., & Mayer, J. (1998). Naturwissenschaftsdidaktische Forschung: Perspektiven für die Unterrichtspraxis. Kiel: IPN.
  • Heller, P., & Finley, F. (1992). Variable uses of alternative conceptions: A case study in current electricity. Journal of Research in Science Teaching, 29, 259-275.
  • Henriques, L. (2002). Children's misconceptions about weather: A review of the literature. School Science and Mathematics, 102(5), 202–215.
  • Hughes, S., Lyddy, F., & Lambe, S. (2012). Misconceptions about psychological science: content/uploads/2012/06/Miscon_Review_August_2012.pdf. Retrieved August 31, 2012, from http://cbsi.ie/wp
  • Iona, M. (1987). Why Johnny can’t learn physics from textbooks I have known,” Mario Iona’s Acceptance speech for the 1986 Millikan Lecture Award presented by the American Association of Physics Teachers, Columbus, Ohio, 26 June 1986. American Journal of Physics, 55, 299-307.
  • Istanda, V., Chang, C. Y., Lee, W. C., Liua,Y. C., & Wang, S. R. (2012). Concept cartoons based two-tier online testing system for magnetism conception. Applied Mechanics and Materials, 148(149), 891-894.
  • Ivowi, U. M. O. (1984). Misconception in physics amongst Nigerian secondary school students. Physics Education, 19, 279-285.
  • Ivowi, U. M. O. (1986). Students' misconceptions about conservation principles and fields. Research in Science and Technological Education , 4 (2), 127-137.
  • Jacobs, G. (1989). Word usage misconceptions among first-year university physics students. International Journal of Science Education ,11(4), 395-399.
  • Johnstone, A. (1984). New stars for the teacher to steer by? Journal of Chemical Education , 61(10), 847-849.
  • Kaltakci, D. ve Eryilmaz, A. (2010). Sources of optics misconceptions. In G. Cakmakci & M.F. Taşar (Eds.), Contemporary science education research: Learning and assessment (pp. 13–16). Ankara, Turkey: Pegem Akademi.
  • Kikas, E. (2004). Teachers’ conceptions and misconceptions concerning three natural phenomena. Journal of Research in Science Teaching, 41(5), 432–448.
  • Kwen, B. H. (2005). Teachers’ misconceptions of biological science concepts as revealed in science examination papers. AARE 2005 International Education Research Conference .
  • Laçin Şimşek, C. ve Tezcan, R. (2008). Çocukların fen kavramlarıyla ilgili düşüncelerinin gelişimini etkileyen faktörler. İlköğretim Online, 7(3), 569-577.
  • Landau, J. D., & Bavaria A. J. (2003). Does deliberate source monitoring reduce students’ misconceptions about psychology? Teaching of Psychology, 30, 311-314.
  • McIlveen, P., McGregor-Bayne, H., Alcock, A., & Hjertum, E. (2003). In evaluation of a semi-structured career assessment interview derived from systems theory framework. Australian Journal of Career Development. 12 (3). Retrieved January 16, 2012, from http://eprints.usq.edu.au/406/1/AJCD-systems.pdf.
  • Miles, M. B., & A. M. Huberman. (1984). Qualitative Data Analysis: A Sourcebook of New Methods. Beverly Hills, Calif.: Sage.
  • Nakhleh, M. B. (1992). Why some students don't learn chemistry. Journal of Chemical Education, 69, 191–196.
  • Ogude, A.N., & Bradley, J.D. (1994). Ionic conduction and electrical neutrality in operating electrochemical cells. Journal of Chemical Education, 71, 29–34.
  • Osborne, R. J., & Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 489–508.
  • Osborne, R., & Cosgrove, M. (1983). Students' conceptions of the changes of states of water. Journal of Research in Science Teaching, 20, 825-838.
  • Öksüz, C. (2010). İlköğretim yedinci sınıf üstün yetenekli öğrencilerin “nokta, doğru ve düzlem” konularındaki kavram yanılgıları. İlköğretim Online, 9(2), 508 525.
  • Özsoy Güneş, Z., Avcı, F. ve Kırbaşlar, G. (2012). Concept knowledge of “natural, processed, and artificial consumption substances” subject in 4th grade science and technology course books and course book analysis in terms of exemplification. Procedia - Social and Behavioral Sciences, 31, 663 – 668.
  • Patton, M. Q. (2002). Qualitative research and evaluation methods. (3rd ed.) Thousand Oaks, CA: Sage Publications.
  • Pittman, K. M. (1999). Student-generated analogies: Another way of knowing? Journal of Research in Science Teaching, 36(1), 1–22.
  • Raduta, C. (2005). General students’ misconceptions related to electricity and magnetism. http://arxiv.org/ftp/physics/papers/0503/0503132.pdf. Retrieved August 31,2012, from
  • Rowell, A. J., Dawson, C. J., & Harry, L. (1990). Changing Misconceptions: A challenge to science educators. International Journal Science Education, 12(2), 167-175.
  • Sanger, M. J., & Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34(4), 377–398.
  • Schoon, K.J. (1995). The origin and extent of alternative conceptions in the earth and space sciences: A survey of pre-service elementary teachers. Journal of Elementary Science Education, 7(2), 27–46.
  • Seçken, N. (2010). Identifying student’s misconceptions about SALT. Procedia Social and Behavioral Sciences, 2, 234–245.
  • Simanek, D.E. (2008). Didaktikogenic Physics Misconceptions: Student misconceptions induced http://www.lhup.edu/~dsimanek/scenario/miscon.htm and textbooks. Retrieved August 31, 2012, from
  • Skelly, K. M., & Hall, D. (1993, August). The development and validation of a categorization of sources of misconceptions in chemistry. Paper presented at the Third International Seminar on Misconceptions and Educational Strategies in science and Mathematics ,Ithaca, NY.
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 257-285.
  • Şen, Ş. ve Yılmaz, A. (2012). Kavramsal değişim metinleri ile desteklenen ikili yerleşik öğrenme modelinin başarıya etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi (H. U. Journal of Education), 42, 367-379.
  • Taber, K. S. (2001). When the analogy breaks down: Modelling the atom on the solar system. Physics Education, 36(3), 222–226.
  • Taylor, A. K., & Kowalski, P. (2004). Naive psychological science: The prevalence, strength, and sources of misconceptions. The Psychological Record, 54,15-25.
  • Taylor, J.A., & Dana, T.M. (2003). An illustration of the complex nature of subject matter knowledge: A case study of secondary school physics teachers’ evaluation of scientiŞc evidence. Journal of Physics Teacher Education Online, 1(4), 3-13.
  • Tekkaya, C., Çapa, Y. ve Yılmaz, Ö. (2000). Biyoloji öğretmen adaylarının genel biyoloji konularındaki kavram yanılgıları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 18, 140 – 147.
  • Thompson, F., & Logue, S. (2006). An exploration of common student misconceptions in science. International Education Journal, 7(4), 553-559.
  • Veiga, M., Pereira, D., & Maskill, R. (1989). Teachers’ language and pupils’ ideas in science lessons: Can teachers avoid reinforcing wrong ideas? International Journal of Science Education,11 (4), 465-479.
  • Webb, M. J. (1985). Analogies and their limitations. School Science and Mathematics, 85(8), 645–650.
  • Wenning, C. J. (2008). Dealing more effectively with alternative conceptions in science. Journal of Physics Teacher Education Online, 5(1), 11-19.
  • Yager, R. & Penick, J. (1987). Resolving the crisis in science education: Understanding before resolution. Science Education ,71(1), 49-5.
  • Yağbasan, R. ve Gülçiçek, Ç. (2003). Fen öğretiminde kavram yanılgılarının karakteristiklerinin tanımlanması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13,102- 120.
  • Yıldırım, A. ve Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri (8. Tıpkı baskı). Ankara: Seçkin Yayıncılık.
  • Yip, D. (1998). Identification of misconceptions in novice biology teachers and remedial strategies for improving biology learning, International Journal of Science Education, 20 (4), 461-477.
  • THE REASONS FOR THE MISCONCEPTIONS ACCORDING TO CHEMISTRY
  • PRE-SERVICE TEACHERS

THE REASONS FOR THE MISCONCEPTIONS ACCORDING TO CHEMISTRY PRE-SERVICE TEACHERS

Year 2013, Issue: 35, 59 - 95, 01.12.2013

Abstract

In the present study, the views of pre-service teachers were obtained in order to determine the reasons for the misconceptions students hold. Data was collected via an interview form and open-ended questions which were prepared in accordance with the views of experts in the field. The obtained data of the study were analyzed via the NVivo qualitative analysis program. Phenomenology pattern, which is one of the appropriate qualitative research patterns, was used in this study since the aim was to determine the reasons behind student misconceptions. Coding theory was conducted within an inductive process for the determination of misconception reasons. According to the results of the study, pre-service chemistry teachers stated that the reasons behind misconceptions were factors such as students, teachers, learning/studying environments, family, media and friends.

References

  • Acar Sesen, B. ve İnce, E. (2010). Internet as a source of misconception: “Radiation and radioactivity”. TOJET: The Turkish Online Journal of Educational Technology, 9(4), 94- 100.
  • Al khawaldeh, S. A., & Al Olaimat, A. M. (2010). The contribution of conceptual change texts accompanied by concept mapping to eleventh-grade students understanding of cellular respiration concepts. Journal of Science Education and Technology, 19(2), 115-125.
  • Altınkaynak Yaylacı, Ö., Yamak, H. ve Kavak, N. (2011). Examining pre-service science teachers’ opinions about holistic approach in science: Electrical energy example. Procedia Social and Behavioral Sciences, 15, 2764–2770.
  • Andersson, B. (1986). Pupils' explanations of some aspects of chemical reactions. Science Education, 70(5), 549-563.
  • Andre, T., & Ding, P. (1991). Student misconceptions, declarative knowledge, stimulus conditions, and problem solving in basic electricity. Contemporary Educational Psychology, 16,303–313.
  • Bar, V., & Travis, A. (1991). Children's views concerning phase changes. Journal of Research in Science Teaching, 28(4), 363-382.
  • Barras, R. (1984). Some misconceptions and misunderstandings perpetuated by teachers and textbooks of biology. Journal of Biological Education, 18, 201-206.
  • Beaty, W. J. (1987). The origin of misconceptions in optics. American Journal of Physics, 55, 872-873.
  • Cansüngü Koray, Ö. ve Bal, Ş. (2002). Fen öğretiminde kavram yanılgıları ve kavramsal değişim stratejisi. Kastamonu Eğitim Dergisi, 10(1), 83-90.
  • Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive Models of Science: Minnesota Studies in the Philosophy of Science, (pp. 129-186). University of Minnesota Press: Minneapolis, MN.
  • Chiapetta, E., & McBride, J. (1980). Exploring the effects of general remediation on ninth-graders' achievement of the mole concept. Science Education, 64(5), 609-614.
  • Chiu, M. H. (2005). A national survey of students’ conceptions in chemistry in Taiwan. Chemical Education International, 6 (1) , Retrieved December 28, 2011, from http://old.iupac.org/publications/cei/vol6/07_Chiu.pdf.
  • Cho, H. H., Kahle, J. B., & Nordland, F. H. (1985). An investigation of high school biology textbooks as sources of misconceptions and difficulties in genetics and some suggestions for teaching genetics. Science Education, 69(5), 707–719.
  • Coştu, B., Ayas, A. ve Ünal,S. (2007). Kavram yanılgıları ve olası nedenleri: Kaynama kavramı. Kastamonu Eğitim Dergisi, 15(1), 123-136.
  • Creswell, J. W. (2007). Research design: Qualitative and quantitative approaches. (Second Edition). Thousand Oaks, CA: Sage.
  • Deshmukh, N. D., & Deshmukh, V. M. (2007, February). A study of students' misconceptions in biology at the secondary school level. International conference to review research in Science, Technology and Mathematics Education, Homi Bhabha Centre for Science Education, TIFR, Mumbai, India.
  • Deshmukh, N. D., & Deshmukh, V. M. (2011, January). Textbook: A source of students’ mısconceptıons at the secondary school level. Fourth international conference to review research on Science, Technology and Mathematics Education, Homi Bhabha Centre for Science Education, TIFR, Mumbai, India.
  • Dikmenli, M. ve Cardak, O. (2004). Lise 1 Biyoloji Ders Kitaplarındaki Kavram Yanılgıları Üzerine Bir Araştırma. Eurasian Journal of Educational Research, 17, 130-141.
  • Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11,481-490.
  • Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of the literature related to concept development in adolescent science students. Studies in Science Education, 5, 61– 84.
  • Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching, 29, 121–142.
  • Garnett, P.J., Garnett, P.J., & Treagust, D.F. (1990). Implications of research of students’ understanding of electrochemistry for improving science curricula and classroom practice. International Journal of Science Education, 12, 147–156.
  • Gilbert, J. K., & Osborne, R. J. (1980). ‘I understand, but I don’t get it”: Some problems of learning science. School Science Review, 61(218), 664–674.
  • Gilbert, J. K., Watts, M. D., & Osborne, R. J. (1982). Students’ conceptions of ideas in mechanics. Physics Education, 17, 62–66.
  • Groenewald, T. (2004). A phenomenological research design illustrated. International Journal http://www.ualberta.ca/~iiqm/backissues/3_1/pdf/groenewald.pdf. Methods. 3(1). Retrieved January 16, 2012, from
  • Häußler, P., Bündner, W., Duit, R., Gräber, W., & Mayer, J. (1998). Naturwissenschaftsdidaktische Forschung: Perspektiven für die Unterrichtspraxis. Kiel: IPN.
  • Heller, P., & Finley, F. (1992). Variable uses of alternative conceptions: A case study in current electricity. Journal of Research in Science Teaching, 29, 259-275.
  • Henriques, L. (2002). Children's misconceptions about weather: A review of the literature. School Science and Mathematics, 102(5), 202–215.
  • Hughes, S., Lyddy, F., & Lambe, S. (2012). Misconceptions about psychological science: content/uploads/2012/06/Miscon_Review_August_2012.pdf. Retrieved August 31, 2012, from http://cbsi.ie/wp
  • Iona, M. (1987). Why Johnny can’t learn physics from textbooks I have known,” Mario Iona’s Acceptance speech for the 1986 Millikan Lecture Award presented by the American Association of Physics Teachers, Columbus, Ohio, 26 June 1986. American Journal of Physics, 55, 299-307.
  • Istanda, V., Chang, C. Y., Lee, W. C., Liua,Y. C., & Wang, S. R. (2012). Concept cartoons based two-tier online testing system for magnetism conception. Applied Mechanics and Materials, 148(149), 891-894.
  • Ivowi, U. M. O. (1984). Misconception in physics amongst Nigerian secondary school students. Physics Education, 19, 279-285.
  • Ivowi, U. M. O. (1986). Students' misconceptions about conservation principles and fields. Research in Science and Technological Education , 4 (2), 127-137.
  • Jacobs, G. (1989). Word usage misconceptions among first-year university physics students. International Journal of Science Education ,11(4), 395-399.
  • Johnstone, A. (1984). New stars for the teacher to steer by? Journal of Chemical Education , 61(10), 847-849.
  • Kaltakci, D. ve Eryilmaz, A. (2010). Sources of optics misconceptions. In G. Cakmakci & M.F. Taşar (Eds.), Contemporary science education research: Learning and assessment (pp. 13–16). Ankara, Turkey: Pegem Akademi.
  • Kikas, E. (2004). Teachers’ conceptions and misconceptions concerning three natural phenomena. Journal of Research in Science Teaching, 41(5), 432–448.
  • Kwen, B. H. (2005). Teachers’ misconceptions of biological science concepts as revealed in science examination papers. AARE 2005 International Education Research Conference .
  • Laçin Şimşek, C. ve Tezcan, R. (2008). Çocukların fen kavramlarıyla ilgili düşüncelerinin gelişimini etkileyen faktörler. İlköğretim Online, 7(3), 569-577.
  • Landau, J. D., & Bavaria A. J. (2003). Does deliberate source monitoring reduce students’ misconceptions about psychology? Teaching of Psychology, 30, 311-314.
  • McIlveen, P., McGregor-Bayne, H., Alcock, A., & Hjertum, E. (2003). In evaluation of a semi-structured career assessment interview derived from systems theory framework. Australian Journal of Career Development. 12 (3). Retrieved January 16, 2012, from http://eprints.usq.edu.au/406/1/AJCD-systems.pdf.
  • Miles, M. B., & A. M. Huberman. (1984). Qualitative Data Analysis: A Sourcebook of New Methods. Beverly Hills, Calif.: Sage.
  • Nakhleh, M. B. (1992). Why some students don't learn chemistry. Journal of Chemical Education, 69, 191–196.
  • Ogude, A.N., & Bradley, J.D. (1994). Ionic conduction and electrical neutrality in operating electrochemical cells. Journal of Chemical Education, 71, 29–34.
  • Osborne, R. J., & Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 489–508.
  • Osborne, R., & Cosgrove, M. (1983). Students' conceptions of the changes of states of water. Journal of Research in Science Teaching, 20, 825-838.
  • Öksüz, C. (2010). İlköğretim yedinci sınıf üstün yetenekli öğrencilerin “nokta, doğru ve düzlem” konularındaki kavram yanılgıları. İlköğretim Online, 9(2), 508 525.
  • Özsoy Güneş, Z., Avcı, F. ve Kırbaşlar, G. (2012). Concept knowledge of “natural, processed, and artificial consumption substances” subject in 4th grade science and technology course books and course book analysis in terms of exemplification. Procedia - Social and Behavioral Sciences, 31, 663 – 668.
  • Patton, M. Q. (2002). Qualitative research and evaluation methods. (3rd ed.) Thousand Oaks, CA: Sage Publications.
  • Pittman, K. M. (1999). Student-generated analogies: Another way of knowing? Journal of Research in Science Teaching, 36(1), 1–22.
  • Raduta, C. (2005). General students’ misconceptions related to electricity and magnetism. http://arxiv.org/ftp/physics/papers/0503/0503132.pdf. Retrieved August 31,2012, from
  • Rowell, A. J., Dawson, C. J., & Harry, L. (1990). Changing Misconceptions: A challenge to science educators. International Journal Science Education, 12(2), 167-175.
  • Sanger, M. J., & Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34(4), 377–398.
  • Schoon, K.J. (1995). The origin and extent of alternative conceptions in the earth and space sciences: A survey of pre-service elementary teachers. Journal of Elementary Science Education, 7(2), 27–46.
  • Seçken, N. (2010). Identifying student’s misconceptions about SALT. Procedia Social and Behavioral Sciences, 2, 234–245.
  • Simanek, D.E. (2008). Didaktikogenic Physics Misconceptions: Student misconceptions induced http://www.lhup.edu/~dsimanek/scenario/miscon.htm and textbooks. Retrieved August 31, 2012, from
  • Skelly, K. M., & Hall, D. (1993, August). The development and validation of a categorization of sources of misconceptions in chemistry. Paper presented at the Third International Seminar on Misconceptions and Educational Strategies in science and Mathematics ,Ithaca, NY.
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 257-285.
  • Şen, Ş. ve Yılmaz, A. (2012). Kavramsal değişim metinleri ile desteklenen ikili yerleşik öğrenme modelinin başarıya etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi (H. U. Journal of Education), 42, 367-379.
  • Taber, K. S. (2001). When the analogy breaks down: Modelling the atom on the solar system. Physics Education, 36(3), 222–226.
  • Taylor, A. K., & Kowalski, P. (2004). Naive psychological science: The prevalence, strength, and sources of misconceptions. The Psychological Record, 54,15-25.
  • Taylor, J.A., & Dana, T.M. (2003). An illustration of the complex nature of subject matter knowledge: A case study of secondary school physics teachers’ evaluation of scientiŞc evidence. Journal of Physics Teacher Education Online, 1(4), 3-13.
  • Tekkaya, C., Çapa, Y. ve Yılmaz, Ö. (2000). Biyoloji öğretmen adaylarının genel biyoloji konularındaki kavram yanılgıları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 18, 140 – 147.
  • Thompson, F., & Logue, S. (2006). An exploration of common student misconceptions in science. International Education Journal, 7(4), 553-559.
  • Veiga, M., Pereira, D., & Maskill, R. (1989). Teachers’ language and pupils’ ideas in science lessons: Can teachers avoid reinforcing wrong ideas? International Journal of Science Education,11 (4), 465-479.
  • Webb, M. J. (1985). Analogies and their limitations. School Science and Mathematics, 85(8), 645–650.
  • Wenning, C. J. (2008). Dealing more effectively with alternative conceptions in science. Journal of Physics Teacher Education Online, 5(1), 11-19.
  • Yager, R. & Penick, J. (1987). Resolving the crisis in science education: Understanding before resolution. Science Education ,71(1), 49-5.
  • Yağbasan, R. ve Gülçiçek, Ç. (2003). Fen öğretiminde kavram yanılgılarının karakteristiklerinin tanımlanması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13,102- 120.
  • Yıldırım, A. ve Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri (8. Tıpkı baskı). Ankara: Seçkin Yayıncılık.
  • Yip, D. (1998). Identification of misconceptions in novice biology teachers and remedial strategies for improving biology learning, International Journal of Science Education, 20 (4), 461-477.
  • THE REASONS FOR THE MISCONCEPTIONS ACCORDING TO CHEMISTRY
  • PRE-SERVICE TEACHERS
There are 73 citations in total.

Details

Other ID JA44UT82VU
Journal Section Articles
Authors

Şenol Şen This is me

Ayhan Yılmaz This is me

Publication Date December 1, 2013
Published in Issue Year 2013 Issue: 35

Cite

APA Şen, Ş., & Yılmaz, A. (2013). KİMYA ÖĞRETMEN ADAYLARINA GÖRE KAVRAM YANILGILARININ NEDENLERİ. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi(35), 59-95.