Research Article
BibTex RIS Cite

AN ANALYSIS OF THE CONCEPTUAL UNDERSTANDING OF SECONDARY SCHOOL STUDENTS ABOUT THE TOPIC OF MIRRORS

Year 2017, Issue: 43, 78 - 122, 30.06.2017

Abstract



















The purpose of the research was to analyze the conceptual
understanding of secondary school students about the topic of mirrors. In this
context, an answer was sought to the question, "What is the process of the
students' conceptual change?" The sample for the research comprised a
total of 46 students (24 girls, 22 boys) in two 10th-grade classes in a high
school in the city of Balıkesir, chosen by the cluster sampling method. A
"Concept Test," "Interviews," "Camera
Recordings," "Student Guidebooks" and "Meaning Analysis
Tables" were used in the data collection. The data analysis process made
use of "Situation Analysis Categories." The students' conceptual
change process was analyzed within the framework of the dimensions of
"Intelligibility," "Plausibility" and
"Fruitfulness." In the evaluation of the results of the analysis of
the students' state of conceptual change, it may be said that most of the
students had been unsatisfied with the concepts they had carried into the
learning process and that with the help of the experiments and activities they
performed, they found the new concepts and explanations
"intelligible," "plausible" and "fruitful" and
were then able to internalize the new scientific concepts and achieve
meaningful and permanent learning.

References

  • Abbott, R., & Ryan, T. (1999). Constructing knowledge, reconstructing schooling, Educational Leadership, 57(3), 66-69.
  • Andersson, B., & Karrqvist, C. (1983). How Swedish pupils aged 12-15 years understand light and its properties. European Journal of Science Education, 5(4), 387-402.
  • Asan, A., ve Gönül, G. (2000). Oluşturmacı öğrenme yaklaşımına göre hazırlanmış örnek bir ünite etkinliği. Milli Eğitim Dergisi, 147.
  • Aydın, S. (2007). Eliminating the misconceptions about geometric optics by conceptual change texts. Unpublished dissertation. Atatürk University, Erzurum.
  • Aydoğan, S., Güneş, B., ve Gülçiçek, Ç. (2003). Isı ve sıcaklık konusunda kavram yanılgıları. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 23(2), 111-124.
  • Beeth, M. E. (1998). Teaching for conceptual change: Using status as a metacognitive tool. Science Education, 82(3), 343-356.
  • Blake, A. (2004). Helping young children to see what is relevant and why: Supporting cognitive change in earth science using analogy. International Journal of Science Education, 26(15), 1855-1873.
  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn. National Academy Press, Washington.
  • Chen, C. C., Lin H. S., & Lin M. L. (2002). Developing a two-tier diagnostic instrument to assess high school students' understanding the formation of images by plane mirror. Proceedings of the National Science Council, 12(3), 106-121.
  • Cooper, P. A. (1993). Paradigm shifts in designed instruction: From behaviorism to cognitivism to constructivism. Educational Technology, 33(5), 12-19.
  • Çalık, M., Ayas, A., & Coll, R. K. (2009). Investigating the effectiveness of an analogy activity in improving students' conceptual change for solution chemistry concepts. International journal of science and mathematics education, 7(4), 651-676.
  • Djanette, B., & Fouad, C. (2014). Determination of university students' misconceptions about light using concept maps. Procedia-Social and Behavioral Sciences, 152, 582-589.
  • Driver, R., & Erickson, G. (1983). Theories - in action: Some theoritical and empirical issues in the study of students' conceptual frameworks in science. Studies in Science Education, 10, 37-60.
  • Fetherstonhaugh, T., & Treagust, D. F. (1992). Students' understanding of light and its properties: teaching to engender conceptual change. Science Education, 76, 653-672.
  • Galili, I., Goldberg, F., & Bendall, S. (1991). Some reflections on plane mirrors and images. The Physics Teacher, 29, 471-477.
  • Galili, I. (1996). Student's conceptual change in geometrical optics. International Journal of Science Education, 18, 847-868.
  • Galili, I. & Hazan, A. (2000). Learners' knowledge in optics: interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88.
  • Geban, Ö., Uzuntiryaki, E., Akçay, H., Kılıç, S., ve Alpat, Ş. (1999). Kavram haritalama ve benzeşme yöntemi ile mol kavramı öğretimi. III. Ulusal Fen Bilimleri Eğitimi Sempozyumu.
  • Hewson, P. W., & Hewson, M. G. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13(1), 1.
  • Goldberg and H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 59-73). Kiel.
  • Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11 (Special issue), 541-553.
  • Hofstein, A., Navon, O., Kipnis, M., & Mamlok‐Naaman, R. (2005). Developing students' ability to ask more and better questions resulting from inquiry‐type chemistry laboratories. Journal of research in science teaching, 42(7), 791-806.
  • Hubber, P. (2005a). Secondary student's perceptions of a constructivist - informed teaching and learning environment for geometric optics. Teaching Science, 51(1), 26-29.
  • Hubber, P. (2005b). Explorations of year 10 students' conceptual change during instruction. Asia-Pacific Forum on Science Learning and Teaching, 6(1), Article 1.
  • Jonassen, D. H., & Strobel, J. (2006). Modeling for meaningful learning. In Engaged learning with emerging technologies (pp.1-27). Springer Netherlands.
  • Kabapınar, F. (2003). Kavram yanılgılarının ölçülmesinde kullanılabilecek bir ölçeğin bilgi kavrama düzeyini ölçmeyi amaçlayan ölçekten farklılıkları, Kuram ve Uygulamada Eğitim Yönetimi, 35, 398-417.
  • Kocakülah, M. S. (1999). A study of the development of Turkish first year university students' understanding of electromagnetism and the implications for instruction. EdD thesis. The University of Leeds, School of Education, Leeds.
  • Kocakülah, A. (2006). Geleneksel öğretimin ilk, orta ve yükseköğretim öğrencilerinin görüntü oluşumu ve renklere ilişkin kavramsal anlamalarına etkisi, Doktora Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Koray, Ö., Köksal, M. S., Özdemir, M., & Presley, A. İ. (2007). The effect of creative and critical thinking based laboratory applications on academic achievement and science process skills. Elementary Education Online, 6(3), 377-389.
  • Kroothkaew, S., & Srisawasdi, N. (2013). Teaching how light can be refracted using simulationbased inquiry with a dual-situated learning model. Procedia-Social and Behavioral Sciences, 93, 2023-2027.
  • La Rosa C., Mayer, M., Patrizi, P., & Vincentini M. (1984). Commonsense knowledge in optics: Preliminary results of an investigation into the properties of light. European Journal of Science Education, 6(4), 387-397.
  • Masters, M. F., & Grove, T. T. (2010). Active learning in intermediate optics through concept building laboratories. American Journal of Physics, 78(5), 485-491.
  • McClintock, C. (1985). Process sampling: A method for case study research of administrative behavior, Educational Administration Quarterly, 21, 205-222.
  • Perales, F. J., & Nievas, F. (1995). Teaching geometric optics: Research, results and educational implications. Research in Science and Technological Education, 13(2), 187.
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward theory of conceptual change. Science Education, 66, 211- 227.
  • Schwedes, H., & Schmidt, D. (1992). Conceptual change: A case study and theoretical comments. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: theoretical issues and empirical studies. Proceedings of an international workshop (pp. 188 - 202). Kiel, Germany: Institute for Science Education at the University of Kiel.
  • Şen, A. İ. (2003). İlköğretim öğrencilerinin ışık, görme ve aynalar konusundaki kavram yanılgılarının ve öğrenme zorluklarının incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 25, 176-185.
  • Taşlıdere, E., & Eryılmaz, A. (2015). Assessment of pre-service teachers' misconceptions in geometrical optics via a three-tier misconception test. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 4(1), 269-289.
  • Tekos, G., & Solomonidou, C. (2009). Constructivist learning and teaching of optics concepts using ICT tools in Greek primary school: A pilot study. Journal of Science Education and Technology, 18(5), 415-428.
  • Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Pres.
  • Thorley, N. R. (1990). The role of the conceptual change model in the interpretation of classroom interaction (Unpublished doctoral dissertation, University of Wisconsin - Madison, Wisconsin).
  • Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387-404.
  • Uzun, S., Alev, N., & Karal, I. S. (2013). A cross-age study of an understanding of light and sight concepts in physics. Science Education International, 24(2), 129-149.
  • Vosniadou, S. (1994). Introduction. Learning and Instruction, 4, 3-6.
  • Yıldırım, A., ve Şimşek, H. (2004). Sosyal bilimlerde nitel araştırma yöntemleri, 4.baskı, Seçkin Yayıncılık, Ankara.
  • Yin, R. K. (1984). Case study research: Design and methods, CA: Sage, Beverly Hills.
  • Yurdakul, B. (2005). Eğitimde yeni yönelimler. Ö. Demirel (Ed.), Yapılandırmacılık. Pegem A Yayınevi, Ankara.

ORTAÖĞRETİM ÖĞRENCİLERİNİN AYNALAR KONUSUNDAKİ KAVRAMSAL ANLAMALARININ ANALİZİ

Year 2017, Issue: 43, 78 - 122, 30.06.2017

Abstract












Araştırmanın amacı, ortaöğretim öğrencilerinin aynalar
konusundaki kavramsal anlamalarının analizini yapmaktır. Bu kapsamda;
“Öğrencilerin kavramsal değişim süreci nasıl gerçeklemektedir?” sorusuna yanıt
aranmıştır. Araştırmanın örneklemini, Balıkesir il merkezinde bulunan bir
lisenin 10. Sınıfları arasından küme örnekleme yöntemi yardımı ile seçilen, iki
şubedeki toplam 46 öğrenci (24 kız, 22 erkek) oluşturmuştur. Veri toplama
sürecinde; “Kavram Testi”, “Görüşmeler”, “Kamera Kayıtları”, “Öğrenci Kılavuzları”
ve “Anlam Çözümleme Tabloları” kullanılmıştır. Verilerin analizi sürecinde,
“Durum Analiz Kategorilerinden” yararlanılmıştır. Öğrencilerin kavramsal
değişim süreçleri; “Anlaşılırlık”, “Akla Yatkınlık” ve “Yararlılık” boyutları
çerçevesinde analiz edilmiştir. Kavramsal değişim durumlarının analizinden elde
edilen sonuçlar değerlendirildiğinde; öğrencilerin çoğunluğunun öğretim
sürecine taşıdıkları mevcut kavramlar ile ilgili hoşnutsuzluk duydukları,
gerçekleştirdikleri deney ve etkinlikler yardımı ile ulaştıkları yeni kavram ve
açıklamaları “anlaşılır”, “akla yatkın” ve “yararlı” buldukları için olası yeni
(bilimsel) kavramları içselleştirerek anlamlı ve kalıcı bir öğrenme
gerçekleştirdikleri söylenebilir.



References

  • Abbott, R., & Ryan, T. (1999). Constructing knowledge, reconstructing schooling, Educational Leadership, 57(3), 66-69.
  • Andersson, B., & Karrqvist, C. (1983). How Swedish pupils aged 12-15 years understand light and its properties. European Journal of Science Education, 5(4), 387-402.
  • Asan, A., ve Gönül, G. (2000). Oluşturmacı öğrenme yaklaşımına göre hazırlanmış örnek bir ünite etkinliği. Milli Eğitim Dergisi, 147.
  • Aydın, S. (2007). Eliminating the misconceptions about geometric optics by conceptual change texts. Unpublished dissertation. Atatürk University, Erzurum.
  • Aydoğan, S., Güneş, B., ve Gülçiçek, Ç. (2003). Isı ve sıcaklık konusunda kavram yanılgıları. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 23(2), 111-124.
  • Beeth, M. E. (1998). Teaching for conceptual change: Using status as a metacognitive tool. Science Education, 82(3), 343-356.
  • Blake, A. (2004). Helping young children to see what is relevant and why: Supporting cognitive change in earth science using analogy. International Journal of Science Education, 26(15), 1855-1873.
  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn. National Academy Press, Washington.
  • Chen, C. C., Lin H. S., & Lin M. L. (2002). Developing a two-tier diagnostic instrument to assess high school students' understanding the formation of images by plane mirror. Proceedings of the National Science Council, 12(3), 106-121.
  • Cooper, P. A. (1993). Paradigm shifts in designed instruction: From behaviorism to cognitivism to constructivism. Educational Technology, 33(5), 12-19.
  • Çalık, M., Ayas, A., & Coll, R. K. (2009). Investigating the effectiveness of an analogy activity in improving students' conceptual change for solution chemistry concepts. International journal of science and mathematics education, 7(4), 651-676.
  • Djanette, B., & Fouad, C. (2014). Determination of university students' misconceptions about light using concept maps. Procedia-Social and Behavioral Sciences, 152, 582-589.
  • Driver, R., & Erickson, G. (1983). Theories - in action: Some theoritical and empirical issues in the study of students' conceptual frameworks in science. Studies in Science Education, 10, 37-60.
  • Fetherstonhaugh, T., & Treagust, D. F. (1992). Students' understanding of light and its properties: teaching to engender conceptual change. Science Education, 76, 653-672.
  • Galili, I., Goldberg, F., & Bendall, S. (1991). Some reflections on plane mirrors and images. The Physics Teacher, 29, 471-477.
  • Galili, I. (1996). Student's conceptual change in geometrical optics. International Journal of Science Education, 18, 847-868.
  • Galili, I. & Hazan, A. (2000). Learners' knowledge in optics: interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88.
  • Geban, Ö., Uzuntiryaki, E., Akçay, H., Kılıç, S., ve Alpat, Ş. (1999). Kavram haritalama ve benzeşme yöntemi ile mol kavramı öğretimi. III. Ulusal Fen Bilimleri Eğitimi Sempozyumu.
  • Hewson, P. W., & Hewson, M. G. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13(1), 1.
  • Goldberg and H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 59-73). Kiel.
  • Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11 (Special issue), 541-553.
  • Hofstein, A., Navon, O., Kipnis, M., & Mamlok‐Naaman, R. (2005). Developing students' ability to ask more and better questions resulting from inquiry‐type chemistry laboratories. Journal of research in science teaching, 42(7), 791-806.
  • Hubber, P. (2005a). Secondary student's perceptions of a constructivist - informed teaching and learning environment for geometric optics. Teaching Science, 51(1), 26-29.
  • Hubber, P. (2005b). Explorations of year 10 students' conceptual change during instruction. Asia-Pacific Forum on Science Learning and Teaching, 6(1), Article 1.
  • Jonassen, D. H., & Strobel, J. (2006). Modeling for meaningful learning. In Engaged learning with emerging technologies (pp.1-27). Springer Netherlands.
  • Kabapınar, F. (2003). Kavram yanılgılarının ölçülmesinde kullanılabilecek bir ölçeğin bilgi kavrama düzeyini ölçmeyi amaçlayan ölçekten farklılıkları, Kuram ve Uygulamada Eğitim Yönetimi, 35, 398-417.
  • Kocakülah, M. S. (1999). A study of the development of Turkish first year university students' understanding of electromagnetism and the implications for instruction. EdD thesis. The University of Leeds, School of Education, Leeds.
  • Kocakülah, A. (2006). Geleneksel öğretimin ilk, orta ve yükseköğretim öğrencilerinin görüntü oluşumu ve renklere ilişkin kavramsal anlamalarına etkisi, Doktora Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Koray, Ö., Köksal, M. S., Özdemir, M., & Presley, A. İ. (2007). The effect of creative and critical thinking based laboratory applications on academic achievement and science process skills. Elementary Education Online, 6(3), 377-389.
  • Kroothkaew, S., & Srisawasdi, N. (2013). Teaching how light can be refracted using simulationbased inquiry with a dual-situated learning model. Procedia-Social and Behavioral Sciences, 93, 2023-2027.
  • La Rosa C., Mayer, M., Patrizi, P., & Vincentini M. (1984). Commonsense knowledge in optics: Preliminary results of an investigation into the properties of light. European Journal of Science Education, 6(4), 387-397.
  • Masters, M. F., & Grove, T. T. (2010). Active learning in intermediate optics through concept building laboratories. American Journal of Physics, 78(5), 485-491.
  • McClintock, C. (1985). Process sampling: A method for case study research of administrative behavior, Educational Administration Quarterly, 21, 205-222.
  • Perales, F. J., & Nievas, F. (1995). Teaching geometric optics: Research, results and educational implications. Research in Science and Technological Education, 13(2), 187.
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward theory of conceptual change. Science Education, 66, 211- 227.
  • Schwedes, H., & Schmidt, D. (1992). Conceptual change: A case study and theoretical comments. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: theoretical issues and empirical studies. Proceedings of an international workshop (pp. 188 - 202). Kiel, Germany: Institute for Science Education at the University of Kiel.
  • Şen, A. İ. (2003). İlköğretim öğrencilerinin ışık, görme ve aynalar konusundaki kavram yanılgılarının ve öğrenme zorluklarının incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 25, 176-185.
  • Taşlıdere, E., & Eryılmaz, A. (2015). Assessment of pre-service teachers' misconceptions in geometrical optics via a three-tier misconception test. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 4(1), 269-289.
  • Tekos, G., & Solomonidou, C. (2009). Constructivist learning and teaching of optics concepts using ICT tools in Greek primary school: A pilot study. Journal of Science Education and Technology, 18(5), 415-428.
  • Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Pres.
  • Thorley, N. R. (1990). The role of the conceptual change model in the interpretation of classroom interaction (Unpublished doctoral dissertation, University of Wisconsin - Madison, Wisconsin).
  • Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387-404.
  • Uzun, S., Alev, N., & Karal, I. S. (2013). A cross-age study of an understanding of light and sight concepts in physics. Science Education International, 24(2), 129-149.
  • Vosniadou, S. (1994). Introduction. Learning and Instruction, 4, 3-6.
  • Yıldırım, A., ve Şimşek, H. (2004). Sosyal bilimlerde nitel araştırma yöntemleri, 4.baskı, Seçkin Yayıncılık, Ankara.
  • Yin, R. K. (1984). Case study research: Design and methods, CA: Sage, Beverly Hills.
  • Yurdakul, B. (2005). Eğitimde yeni yönelimler. Ö. Demirel (Ed.), Yapılandırmacılık. Pegem A Yayınevi, Ankara.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Studies on Education
Journal Section Articles
Authors

Özgür Anıl

Hüseyin Küçüközer

Publication Date June 30, 2017
Published in Issue Year 2017 Issue: 43

Cite

APA Anıl, Ö., & Küçüközer, H. (2017). ORTAÖĞRETİM ÖĞRENCİLERİNİN AYNALAR KONUSUNDAKİ KAVRAMSAL ANLAMALARININ ANALİZİ. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi(43), 78-122.