Review
BibTex RIS Cite

Özel Eğitimde Teknolojiyle Zenginleştirilmiş Bedenlenmiş Öğrenme: Sistematik Bir Literatür İncelemesi

Year 2025, Issue: 63, 924 - 947, 27.03.2025
https://doi.org/10.53444/deubefd.1576072

Abstract

Teknolojinin hızla gelişmesiyle birlikte, eğitim ortamlarında Bedenlenmiş Bilişin (EC) potansiyeli giderek daha fazla araştırılmaktadır. Özel gereksinimli bireyler için Bedenlenmiş Öğrenme (EL) temelli çeşitli çalışmalar yürütülmektedir. Bu çalışmada, 2013-2023 yılları arasında özel gereksinimli bireyler için teknolojiyle zenginleştirilmiş EL uygulamalarının kullanımına ilişkin sistematik bir inceleme yapılmıştır. Sistematik inceleme sonucunda, son yıllarda bu alana yönelik çalışmalarda bir artış olduğu görülmüştür. Çalışmalar çoğunlukla ilkokul ve üniversite düzeylerinde ve Otizm Spektrum Bozukluğu (OSB) olan bireylerle yürütülmüştür. Veri toplama araçları olarak genellikle başarı ve standart testler, gözlemler, ölçekler, video kayıtları, görüşmeler ve sistem günlükleri kullanılmıştır. Çalışmalarda, EL uygulamalarının özel gereksinimli bireylerin bilişsel, motor ve sosyal-duygusal gelişimleri üzerine etkisine odaklanıldığı görülmüştür. En yaygın kullanılan teknoloji Kinect teknolojisi olmuştur. Bununla birlikte, karmaşık hareket verilerini daha geniş bir alanda işlemek için kamera sistemlerinin ve görüntü işleme teknolojilerinin potansiyelinin araştırıldığı çalışmalara doğru bir eğilim olduğu ortaya çıkmıştır. İncelenen çalışmalar değerlendirme yöntemleri açısından zengindi. Özellikle otomatik değerlendirme sistemlerinin önemini vurgulayan çalışmaların da mevcut olduğu görülmüştür.

Ethical Statement

Sistematik inceleme olduğu ve insan katılımcı içermediği için etik kurul izni alınmamıştır.

References

  • Ale, M., Sturdee, M., & Rubegni, E. (2022). A systematic survey on embodied cognition: 11 years of research in child–computer interaction. International Journal of Child-Computer Interaction, 33, 2-17. https://doi.org/10.1016/j.ijcci.2022.100478
  • Altanis, G., Boloudakis, M., Retalis, S., & Nikou, N. (2013). Children with motor impairments play a kinect learning game: first findings from a pilot case in an authentic classroom environment. J Interact Design Architect, 19, 91-104.
  • Bokosmaty, S., Mavilidi, M. F. & Paas, F. (2017). Making versus observing manipulations of geometric properties of triangles to learn geometry using dynamic geometry software. Computers & Education, 113, 313-326. https://doi.org/10.1016/j.compedu.2017.06.008
  • Cabrera, R., Molina, A., Gómez, I., & García-Heras, J. (2017). Kinect as an access device for people with cerebral palsy: A preliminary study. International Journal of Human-Computer Studies, 108, 62-69. https://doi.org/10.1016/j.ijhcs.2017.07.004
  • Caemmerer, J. M., Keith, T. Z., & Reynolds, M. R. (2020). Beyond individual intelligence tests: application of Cattell-Horn-Carroll theory. Intelligence, 79, 101433. https://doi.org/10.1016/j.intell.2020.101433
  • Chandler, P., & Tricot, A. (2015). Mind your body: The essential role of body movements in children’s learning. Educational Psychology Review, 27 (3), 365–370. https://doi.org/10.1007/s10648-015-9333-3
  • Contreras, M. I., Bauza, C. G., & Santos, G. (2019). Videogame-based tool for learning in the motor, cognitive and socio-emotional domains for children with intellectual disability. Entertainment Computing, 30, 100301. https://doi.org/10.1016/j.entcom.2019.100301
  • Dahn, M., Enyedy, N., & Danish, J. (2018). How Teachers Use Instructional Improvisation to Organize Science Discourse and Learning in a Mixed Reality Environment (pp. 72–79). London, UK: International Society of the Learning Sciences (ISLS). https://repository.isls.org//handle/1/915
  • De Luca, V., Schena, A., Covino, A., Di Bitonto, P., Potenza, A., Barba, M. C., ... & De Paolis, L. T. (2024). Serious Games for the Treatment of Children with ADHD: The BRAVO Project. Information Systems Frontiers, 1-23. https://doi.org/10.1007/s10796-023-10457-8
  • Degli Innocenti, E., Geronazzo, M., Vescovi, D., Nordahl, R., Serafin, S., Ludovico, L. A., & Avanzini, F. (2019). Mobile virtual reality for musical genre learning in primary education. Computers & Education, 139, 102-117. https://doi.org/10.1016/j.compedu.2019.04.010
  • Del Rio Guerra, M. S., & Martin-Gutierrez, J. (2020). Evaluation of full-body gestures performed by individuals with down syndrome: Proposal for designing user interfaces for all based on kinect sensor. Sensors, 20(14), 3930. https://doi.org/10.3390/s20143930
  • Elhayek, A., de Aguiar, E., Jain, A., Tompson, J., Pishchulin, L., Andriluka, M., … Theobalt, C. 2015, June. Efficient convnet-based marker-less motion capture in general scenes with a low number of cameras. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3810-3818).
  • Flores-Gallegos, R., Rodríguez-Leis, P., & Fernández, T. (2022). Effects of a virtual reality training program on visual attention and motor performance in children with reading learning disability. International Journal of Child-Computer Interaction, 32, 100394. https://doi.org/10.1016/j.ijcci.2021.100394
  • Georgiou, Y., & Ioannou, A. (2019). Embodied learning in a digital world: A systematic review of empirical research in K-12 education. In Learning in a Digital World (pp. 155-177). Springer, Singapore. https://doi.org/10.1007/978-981-13-8265-9_8
  • Georgiou, Y., & Ioannou, A. (2021). Developing, enacting and evaluating a learning experience design for technology-enhanced embodied learning in math classrooms. TechTrends, 65(1), 38-50. https://doi.org/10.1007/s11528-020-00543-y
  • Gilbertson, T., Hsu, L. Y., McCoy, S. W., & O’Neil, M. E. (2020). Gaming technologies for children and youth with cerebral palsy. Cerebral Palsy, 2917-2945. https://doi.org/10.1007/978-3-319-74558-9_179
  • Gürbulak, N., & Esgin, E. (Mayıs, 2016). Özel Eğitimde Hareket Tabanlı Teknolojilerin Kullanımı. 10th International Computer and Instructional Technologies Symposium (ICITS), Rize.
  • He, L., He, F., Li, Y., Xiong, X., & Zhang, J. (2022). A Robust Movement Quantification Algorithm of Hyperactivity Detection for ADHD Children Based on 3D Depth Images. IEEE Transactions on Image Processing, 31, 5025-5037. https://doi.org/10.1109/TIP.2022.3185793
  • Higgins, J. P. T., & Green, S. (Eds). (March 2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. https://www.unicef.org/protection/57929_58537.html adresinden 24 Nisan 2024 tarihinde erişilmiştir.
  • Hu, X., & Han, Z. R. (2019). Effects of gesture-based match-to-sample instruction via virtual reality technology for Chinese students with autism spectrum disorders. International Journal of Developmental Disabilities, 65(5), 327-336. https://doi.org/10.1080/20473869.2019.1602350
  • Hung, J. W., Chang, Y. J., Chou, C. X., Wu, W. C., Howell, S., & Lu, W. P. (2018). Developing a suite of Motion-Controlled games for upper extremity training in children with cerebral palsy: a proof-of-concept study. Games for health journal, 7(5), 327-334. https://doi.org/10.1089/g4h.2017.0141
  • Ioannou, M., & Ioannou, A. (2020). Technology-enhanced embodied learning. Educational Technology & Society, 23(3), 81-94. https://www.jstor.org/stable/26926428
  • İşler, B., & Kılıç, M. (2021). Eğitimde Yapay Zeka Kullanımı ve Gelişimi. Yeni Medya Elektronik Dergisi, 5(1), 1-11. Johnson-Glenberg, M. C., Megowan-Romanowicz, C., Birchfield, D. A., & Savio-Ramos, C. (2016). Effects of embodied learning and digital platform on the retention of physics content: Centripetal force. Frontiers in psychology, 7, 1819. https://doi.org/10.3389/fpsyg.2016.01819
  • Kang, Y. S., & Chang, Y. J. (2019). Using a motion‐controlled game to teach four elementary school children with intellectual disabilities to improve hand hygiene. Journal of Applied Research in Intellectual Disabilities, 32(4), 942-951. https://doi.org/10.1111/jar.12587
  • Kang, Y. S., & Chang, Y. J. (2019). Using game technology to teach six elementary school children with autism to take a shower independently. Developmental Neurorehabilitation, 22(5), 329–337. https://doi.org/10.1080/17518423.2018.1501778
  • Kang, Y. S., Chang, Y. J., & Howell, S. R. (2021). Using a kinect‐based game to teach oral hygiene in four elementary students with intellectual disabilities. Journal of Applied Research in Intellectual Disabilities, 34(2), 606-614. https://doi.org/10.1111/jar.12828
  • Kanwal, N., Bostanci, E., Currie, K., & Clark, A. F. (2015). A navigation system for the visually impaired: a fusion of vision and depth sensor. Applied bionics and biomechanics, 2015. https://doi.org/10.1155/2015/479857
  • Kosmas, P., Ioannou, A., & Retalis, S. (2017). Using embodied learning technology to advance motor performance of children with special educational needs and motor impairments. In É. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín (Eds.), Data-driven approaches in digital education (pp.111-124). EC-TEL 2017. Lecture notes in computer science (Vol. 10474). https://doi.org/10.1007/978-3-319-66610-5_9
  • Kosmas, P., Ioannou, A., & Retalis, S. (2018). Moving bodies to moving minds: A study of the use of motion-based games in special education. TechTrends, 62 (6), 594–601. https://doi.org/10.1007/s11528-018-0294-5
  • Kosmas, P., Ioannou, A., & Zaphiris, P. (2019). Implementing embodied learning in the classroom: Effects on children's memory and language skills. Educational Media International, 56(1), 59–74. https://doi.org/10.1080/09523 987.2018.1547948.
  • Kosmas, P., & Zaphiris, P. (2023). Improving students’ learning performance through Technology-Enhanced Embodied Learning: A four-year investigation in classrooms. Education and Information Technologies, 1-24. https://doi.org/10.1080/09523987.2018.1547948
  • Kowallik, A. E., Pohl, M., & Schweinberger, S. R. (2021). Facial imitation improves emotion recognition in adults with different levels of sub-clinical autistic traits. Journal of Intelligence, 9(1), 4. https://doi.org/10.3390/jintelligence9010004
  • Kusumaningsih, A., Kurniawati, A., Wahyuningrum, R. T., Khozaimi, A., & Pratama, R. N. (2022, August). Serious Exergame for Special Education Needs using 3D-Depth Camera. In 2022 10th International Conference on Information and Communication Technology (ICoICT) (pp. 59-63). IEEE. https://doi.org/10.1109/ICoICT55009.2022.9914903
  • Kwon, H., Maeng, H., & Chung, J. (2022). Development of an ICT-Based Exergame program for children with developmental disabilities. Journal of Clinical Medicine, 11(19), 5890. https://doi.org/10.3390/jcm11195890
  • Lee, I. J. (2021). Kinect-for-windows with augmented reality in an interactive roleplay system for children with an autism spectrum disorder. Interactive Learning Environments, 29(4), 688–704. https://doi.org/10.1080/10494820.2019.1710851
  • Lekova, A., Andreeva, A., Tanev, T., Simonska, M., & Kostova, S. (2022, June). A system for speech and language therapy with a potential to work in the IoT. In Proceedings of the 23rd International Conference on Computer Systems and Technologies (pp. 119-124). https://doi.org/10.1145/3546118.3546147
  • Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174-187. https://doi.org/10.1016/j.compedu.2016.01.001
  • Macrine, S. L., & Fugate, J. M. (2020). Embodied cognition. In Oxford Research Encyclopedia of Education. Malinverni, L., & Pares, N. (2014). Learning of abstract concepts through full-body interaction: A systematic review. Educational Technology & Society. 17(4), 100-116. https://www.jstor.org/stable/jeductechsoci.17.4.100 Martínez, F., Barraza, C., González, N., & González, J. (2016). KAPEAN: understanding affective states of children with ADHD. Journal of Educational Technology & Society, 19(2), 18-28. https://www.jstor.org/stable/jeductechsoci.19.2.18
  • Martínez-Monés, A., Villagrá-Sobrino, S., Georgiou, Y., Ioannou, A., & Ruiz, M. J. (2019, June). The INTELed pedagogical framework: Applying embodied digital apps to support special education children in inclusive educational contexts. In Proceedings of the XX International Conference on Human Computer Interaction (pp. 1-4). https://doi.org/10.1145/3335595.3335652
  • Milli Eğitim Bakanlığı [MEB]. (2006). Özel Eğitim Hizmetleri Yönetmeliği. 31.05.2006 tarih ve 26184 sayılı Resmi Gazete.
  • Mino‐Roy, J., St‐Jean, J., Lemus‐Folgar, O., Caron, K., Constant‐Nolett, O., Després, J. P., & Gauthier‐Boudreault, C. (2022). Effects of music, dance and drama therapies for people with an intellectual disability: A scoping review. British Journal of Learning Disabilities, 50(3), 385-401. https://doi.org/10.1111/bld.12402
  • Mohd Nordin, A., Ismail, J., & Kamal Nor, N. (2021). Motor development in children with autism spectrum disorder. Frontiers in pediatrics, 9, 598276. https://doi.org/10.3389/fped.2021.598276
  • Mora-Guiard, J., Crowell, C., Pares, N., & Heaton, P. (2017). Sparking social initiation behaviors in children with Autism through full-body Interaction. International Journal of Child-Computer Interaction, 11, 62-71. https://doi.org/10.1016/j.ijcci.2016.10.006
  • Neto, L. B., Grijalva, F., Maike, V. R. M. L., Martini, L. C., Florencio, D., Baranauskas, M. C. C., ... & Goldenstein, S. (2016). A kinect-based wearable face recognition system to aid visually impaired users. IEEE Transactions on Human-Machine Systems, 47(1), 52-64. 10.1109/THMS.2016.2604367
  • Ojeda-Castelo, J.J., Piedra-Fernandez, J.A. & Iribarne, L. (2021). A device-interaction model for users with special needs. Multimed Tools Appl, 80, 6675–6710. https://doi.org/10.1007/s11042-020-10026-0
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj, 372. https://doi.org/10.1136/bmj.n71
  • Roy, A. K., Soni, Y., & Dubey, S. (2013, August). Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS) (pp. 298-304). IEEE. https://doi.org/10.1109/GHTC-SAS.2013.6629934
  • Salem, Y., Gropack, S. J., Coffin, D., & Godwin, E. M. (2012). Effectiveness of a low-cost virtual reality system for children with developmental delay: a preliminary randomised single-blind controlled trial. Physiotherapy, 98(3), 189-195. https://doi.org/10.1016/j.physio.2012.06.003
  • Schneider, W. J., & McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (3rd ed., pp. 99–144). The Guilford Press.
  • Schneider, W. J., & McGrew, K. S. (2018). The Cattell–Horn–Carroll abilities (CHC theory) is a comprehensive. Contemporary Intellectual Assessment: Theories, Tests, and Issues, 73.
  • Sevick, M., Eklund, E., Mensch, A., Foreman, M., Standeven, J., & Engsberg, J. (2016). Using free internet videogames in upper extremity motor training for children with cerebral palsy. Behavioral Sciences, 6(2), 10. https://doi.org/10.3390/bs6020010
  • Shih, C. H., Wang, S. H., & Wang, Y. T. (2014). Assisting children with attention deficit hyperactivity disorder to reduce the hyperactive behavior of arbitrary standing in class with a Nintendo Wii remote controller through an active reminder and preferred reward stimulation. Research in developmental disabilities, 35(9), 2069-2076. https://doi.org/10.1016/j.ridd.2014.05.007
  • Skulmowski, A., & Rey, G. D. (2018). Embodied learning: introducing a taxonomy based on bodily engagement and task integration. Cognitive research: principles and implications, 3(1), 1-10. https://doi.org/10.1186/s41235-018-0092-9
  • Tancredi, S., Wang, J., Li, H. T., Yao, C. J., Macfarlan, G., Ryokai, K. (2022, June). Balance Board Math:“Being the graph” through the sense of balance for embodied self-regulation and learning. In Proceedings of the 21st Annual ACM Interaction Design and Children Conference (pp. 137-149). https://doi.org/10.1145/3501712.3529743
  • The Joanna Quality Appraisal Score Sheet. (2017). https://jbi.global/sites/default/files/2019-05/JBI_Critical_Appraisal-Checklist_for_Systematic_Reviews2017_0.pdf.
  • Tran, C., Smith, B., & Buschkuehl, M. (2017). Support of mathematical thinking through embodied cognition: Nondigital and digital approaches. Cognitive Research: Principles and Implications, 2, 1-18. https://doi.org/10.1186/s41235-017-0053-8
  • Torres-Carrion, P., González-González, C., Bravo, C. B., & Infante-Moro, A. (2021). Gestural interaction and reading skills: A case study of people with Down syndrome. Universal Access in the Information Society, 1-12. https://doi.org/10.1007/s10209-021-00855-7
  • Uzuegbunam, N., Wong, W. H., Cheung, S. C. S., & Ruble, L. (2017). MEBook: multimedia social greetings intervention for children with autism spectrum disorders. IEEE Transactions on Learning Technologies, 11(4), 520-535. 10.1109/TLT.2017.2772255
  • Walkington, C., Chelule, G., Woods, D., & Nathan, M. J. (2018). Collaborative Gesture as a Case of Distributed Mathematical Cognition Gesture as Simulation Action Research questions (pp. 552–559). London, UK: International Society of the Learning Sciences (ISLS). https://repository.isls.org//handle/1/902
  • Wang, J. H., Liyanawatta, M., Lee, C. Y., Huang, Y. L., Yang, S. H., & Chen, G. D. (2023, July). Embodied learning through drama-based situatedness using immersive technology in the classroom. In 2023 IEEE International Conference on Advanced Learning Technologies (ICALT) (pp. 274-276). IEEE. https://doi.org/10.1109/ICALT58122. 2023.00086
  • Xu, P., Kennedy, G. A., Zhao, F. Y., Zhang, W. J., & Van Schyndel, R. (2023). Wearable obstacle avoidance electronic travel aids for blind and visually impaired individuals: A systematic review. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3285396
  • Yang, Y., Chen, L., He, W., Sun, D., & Salas-Pilco, S. Z. (2024). Artificial Intelligence for enhancing Special Education for K-12: A decade of trends, themes, and global insights (2013–2023). International Journal of Artificial Intelligence in Education, 1-49. https://doi.org/10.1007/s40593-024-00422-0
  • Yiannoutsou, N., Johnson, R., & Price, S. (2021). Non-visual Virtual Reality: Considerations for the Pedagogical Design of Embodied Mathematical Experiences for Visually Impaired Children. Educational Technology & Society, 24 (2), 151–163. https://www.jstor.org/stable/27004938
  • Zhong, B., Su, S., Liu, X., & Zhan, Z. (2023). A literature review on the empirical studies of technology-based embodied learning. Interactive learning environments, 31(8), 5180-5199. https://doi.org/10.1080/10494820.2021.1999274

Embodied Learning Enhanced with Technology in Special Education: A Systematic Literature Review

Year 2025, Issue: 63, 924 - 947, 27.03.2025
https://doi.org/10.53444/deubefd.1576072

Abstract

With the rapid development of technology, the potential of Embodied Cognition (EC) in educational environments is increasingly being explored. Various studies have been conducted based on Embodied Learning (EL) for individuals with special needs. In this study, a systematic review was made of the use of technology enhanced EL applications for individuals with special needs between 2013 and 2023. As a result of the systematic review, it was seen that there has been an increase in study in recent years. Studies have mostly been conducted at primary school and university levels and with individuals with Autism Spectrum Disorder (ASD). Achievement and standardized tests, observations, scales, video recordings, interviews, and system logs have generally been used as data collection tools. The focus has been on the cognitive, motor and social-emotional development of individuals with special needs that can be achieved through EL applications. Kinect technology was the most widely used. However, there was also a trend towards studies that take into account the potential of camera systems and image processing technologies to process complex motion data in a wider area. The studies examined were rich in terms of evaluation methods. There are also studies emphasizing the importance of automatic evaluation systems.

Ethical Statement

Sistematik inceleme olduğu ve insan katılımcı içermediği için etik kurul izni alınmamıştır.

References

  • Ale, M., Sturdee, M., & Rubegni, E. (2022). A systematic survey on embodied cognition: 11 years of research in child–computer interaction. International Journal of Child-Computer Interaction, 33, 2-17. https://doi.org/10.1016/j.ijcci.2022.100478
  • Altanis, G., Boloudakis, M., Retalis, S., & Nikou, N. (2013). Children with motor impairments play a kinect learning game: first findings from a pilot case in an authentic classroom environment. J Interact Design Architect, 19, 91-104.
  • Bokosmaty, S., Mavilidi, M. F. & Paas, F. (2017). Making versus observing manipulations of geometric properties of triangles to learn geometry using dynamic geometry software. Computers & Education, 113, 313-326. https://doi.org/10.1016/j.compedu.2017.06.008
  • Cabrera, R., Molina, A., Gómez, I., & García-Heras, J. (2017). Kinect as an access device for people with cerebral palsy: A preliminary study. International Journal of Human-Computer Studies, 108, 62-69. https://doi.org/10.1016/j.ijhcs.2017.07.004
  • Caemmerer, J. M., Keith, T. Z., & Reynolds, M. R. (2020). Beyond individual intelligence tests: application of Cattell-Horn-Carroll theory. Intelligence, 79, 101433. https://doi.org/10.1016/j.intell.2020.101433
  • Chandler, P., & Tricot, A. (2015). Mind your body: The essential role of body movements in children’s learning. Educational Psychology Review, 27 (3), 365–370. https://doi.org/10.1007/s10648-015-9333-3
  • Contreras, M. I., Bauza, C. G., & Santos, G. (2019). Videogame-based tool for learning in the motor, cognitive and socio-emotional domains for children with intellectual disability. Entertainment Computing, 30, 100301. https://doi.org/10.1016/j.entcom.2019.100301
  • Dahn, M., Enyedy, N., & Danish, J. (2018). How Teachers Use Instructional Improvisation to Organize Science Discourse and Learning in a Mixed Reality Environment (pp. 72–79). London, UK: International Society of the Learning Sciences (ISLS). https://repository.isls.org//handle/1/915
  • De Luca, V., Schena, A., Covino, A., Di Bitonto, P., Potenza, A., Barba, M. C., ... & De Paolis, L. T. (2024). Serious Games for the Treatment of Children with ADHD: The BRAVO Project. Information Systems Frontiers, 1-23. https://doi.org/10.1007/s10796-023-10457-8
  • Degli Innocenti, E., Geronazzo, M., Vescovi, D., Nordahl, R., Serafin, S., Ludovico, L. A., & Avanzini, F. (2019). Mobile virtual reality for musical genre learning in primary education. Computers & Education, 139, 102-117. https://doi.org/10.1016/j.compedu.2019.04.010
  • Del Rio Guerra, M. S., & Martin-Gutierrez, J. (2020). Evaluation of full-body gestures performed by individuals with down syndrome: Proposal for designing user interfaces for all based on kinect sensor. Sensors, 20(14), 3930. https://doi.org/10.3390/s20143930
  • Elhayek, A., de Aguiar, E., Jain, A., Tompson, J., Pishchulin, L., Andriluka, M., … Theobalt, C. 2015, June. Efficient convnet-based marker-less motion capture in general scenes with a low number of cameras. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3810-3818).
  • Flores-Gallegos, R., Rodríguez-Leis, P., & Fernández, T. (2022). Effects of a virtual reality training program on visual attention and motor performance in children with reading learning disability. International Journal of Child-Computer Interaction, 32, 100394. https://doi.org/10.1016/j.ijcci.2021.100394
  • Georgiou, Y., & Ioannou, A. (2019). Embodied learning in a digital world: A systematic review of empirical research in K-12 education. In Learning in a Digital World (pp. 155-177). Springer, Singapore. https://doi.org/10.1007/978-981-13-8265-9_8
  • Georgiou, Y., & Ioannou, A. (2021). Developing, enacting and evaluating a learning experience design for technology-enhanced embodied learning in math classrooms. TechTrends, 65(1), 38-50. https://doi.org/10.1007/s11528-020-00543-y
  • Gilbertson, T., Hsu, L. Y., McCoy, S. W., & O’Neil, M. E. (2020). Gaming technologies for children and youth with cerebral palsy. Cerebral Palsy, 2917-2945. https://doi.org/10.1007/978-3-319-74558-9_179
  • Gürbulak, N., & Esgin, E. (Mayıs, 2016). Özel Eğitimde Hareket Tabanlı Teknolojilerin Kullanımı. 10th International Computer and Instructional Technologies Symposium (ICITS), Rize.
  • He, L., He, F., Li, Y., Xiong, X., & Zhang, J. (2022). A Robust Movement Quantification Algorithm of Hyperactivity Detection for ADHD Children Based on 3D Depth Images. IEEE Transactions on Image Processing, 31, 5025-5037. https://doi.org/10.1109/TIP.2022.3185793
  • Higgins, J. P. T., & Green, S. (Eds). (March 2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. https://www.unicef.org/protection/57929_58537.html adresinden 24 Nisan 2024 tarihinde erişilmiştir.
  • Hu, X., & Han, Z. R. (2019). Effects of gesture-based match-to-sample instruction via virtual reality technology for Chinese students with autism spectrum disorders. International Journal of Developmental Disabilities, 65(5), 327-336. https://doi.org/10.1080/20473869.2019.1602350
  • Hung, J. W., Chang, Y. J., Chou, C. X., Wu, W. C., Howell, S., & Lu, W. P. (2018). Developing a suite of Motion-Controlled games for upper extremity training in children with cerebral palsy: a proof-of-concept study. Games for health journal, 7(5), 327-334. https://doi.org/10.1089/g4h.2017.0141
  • Ioannou, M., & Ioannou, A. (2020). Technology-enhanced embodied learning. Educational Technology & Society, 23(3), 81-94. https://www.jstor.org/stable/26926428
  • İşler, B., & Kılıç, M. (2021). Eğitimde Yapay Zeka Kullanımı ve Gelişimi. Yeni Medya Elektronik Dergisi, 5(1), 1-11. Johnson-Glenberg, M. C., Megowan-Romanowicz, C., Birchfield, D. A., & Savio-Ramos, C. (2016). Effects of embodied learning and digital platform on the retention of physics content: Centripetal force. Frontiers in psychology, 7, 1819. https://doi.org/10.3389/fpsyg.2016.01819
  • Kang, Y. S., & Chang, Y. J. (2019). Using a motion‐controlled game to teach four elementary school children with intellectual disabilities to improve hand hygiene. Journal of Applied Research in Intellectual Disabilities, 32(4), 942-951. https://doi.org/10.1111/jar.12587
  • Kang, Y. S., & Chang, Y. J. (2019). Using game technology to teach six elementary school children with autism to take a shower independently. Developmental Neurorehabilitation, 22(5), 329–337. https://doi.org/10.1080/17518423.2018.1501778
  • Kang, Y. S., Chang, Y. J., & Howell, S. R. (2021). Using a kinect‐based game to teach oral hygiene in four elementary students with intellectual disabilities. Journal of Applied Research in Intellectual Disabilities, 34(2), 606-614. https://doi.org/10.1111/jar.12828
  • Kanwal, N., Bostanci, E., Currie, K., & Clark, A. F. (2015). A navigation system for the visually impaired: a fusion of vision and depth sensor. Applied bionics and biomechanics, 2015. https://doi.org/10.1155/2015/479857
  • Kosmas, P., Ioannou, A., & Retalis, S. (2017). Using embodied learning technology to advance motor performance of children with special educational needs and motor impairments. In É. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín (Eds.), Data-driven approaches in digital education (pp.111-124). EC-TEL 2017. Lecture notes in computer science (Vol. 10474). https://doi.org/10.1007/978-3-319-66610-5_9
  • Kosmas, P., Ioannou, A., & Retalis, S. (2018). Moving bodies to moving minds: A study of the use of motion-based games in special education. TechTrends, 62 (6), 594–601. https://doi.org/10.1007/s11528-018-0294-5
  • Kosmas, P., Ioannou, A., & Zaphiris, P. (2019). Implementing embodied learning in the classroom: Effects on children's memory and language skills. Educational Media International, 56(1), 59–74. https://doi.org/10.1080/09523 987.2018.1547948.
  • Kosmas, P., & Zaphiris, P. (2023). Improving students’ learning performance through Technology-Enhanced Embodied Learning: A four-year investigation in classrooms. Education and Information Technologies, 1-24. https://doi.org/10.1080/09523987.2018.1547948
  • Kowallik, A. E., Pohl, M., & Schweinberger, S. R. (2021). Facial imitation improves emotion recognition in adults with different levels of sub-clinical autistic traits. Journal of Intelligence, 9(1), 4. https://doi.org/10.3390/jintelligence9010004
  • Kusumaningsih, A., Kurniawati, A., Wahyuningrum, R. T., Khozaimi, A., & Pratama, R. N. (2022, August). Serious Exergame for Special Education Needs using 3D-Depth Camera. In 2022 10th International Conference on Information and Communication Technology (ICoICT) (pp. 59-63). IEEE. https://doi.org/10.1109/ICoICT55009.2022.9914903
  • Kwon, H., Maeng, H., & Chung, J. (2022). Development of an ICT-Based Exergame program for children with developmental disabilities. Journal of Clinical Medicine, 11(19), 5890. https://doi.org/10.3390/jcm11195890
  • Lee, I. J. (2021). Kinect-for-windows with augmented reality in an interactive roleplay system for children with an autism spectrum disorder. Interactive Learning Environments, 29(4), 688–704. https://doi.org/10.1080/10494820.2019.1710851
  • Lekova, A., Andreeva, A., Tanev, T., Simonska, M., & Kostova, S. (2022, June). A system for speech and language therapy with a potential to work in the IoT. In Proceedings of the 23rd International Conference on Computer Systems and Technologies (pp. 119-124). https://doi.org/10.1145/3546118.3546147
  • Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174-187. https://doi.org/10.1016/j.compedu.2016.01.001
  • Macrine, S. L., & Fugate, J. M. (2020). Embodied cognition. In Oxford Research Encyclopedia of Education. Malinverni, L., & Pares, N. (2014). Learning of abstract concepts through full-body interaction: A systematic review. Educational Technology & Society. 17(4), 100-116. https://www.jstor.org/stable/jeductechsoci.17.4.100 Martínez, F., Barraza, C., González, N., & González, J. (2016). KAPEAN: understanding affective states of children with ADHD. Journal of Educational Technology & Society, 19(2), 18-28. https://www.jstor.org/stable/jeductechsoci.19.2.18
  • Martínez-Monés, A., Villagrá-Sobrino, S., Georgiou, Y., Ioannou, A., & Ruiz, M. J. (2019, June). The INTELed pedagogical framework: Applying embodied digital apps to support special education children in inclusive educational contexts. In Proceedings of the XX International Conference on Human Computer Interaction (pp. 1-4). https://doi.org/10.1145/3335595.3335652
  • Milli Eğitim Bakanlığı [MEB]. (2006). Özel Eğitim Hizmetleri Yönetmeliği. 31.05.2006 tarih ve 26184 sayılı Resmi Gazete.
  • Mino‐Roy, J., St‐Jean, J., Lemus‐Folgar, O., Caron, K., Constant‐Nolett, O., Després, J. P., & Gauthier‐Boudreault, C. (2022). Effects of music, dance and drama therapies for people with an intellectual disability: A scoping review. British Journal of Learning Disabilities, 50(3), 385-401. https://doi.org/10.1111/bld.12402
  • Mohd Nordin, A., Ismail, J., & Kamal Nor, N. (2021). Motor development in children with autism spectrum disorder. Frontiers in pediatrics, 9, 598276. https://doi.org/10.3389/fped.2021.598276
  • Mora-Guiard, J., Crowell, C., Pares, N., & Heaton, P. (2017). Sparking social initiation behaviors in children with Autism through full-body Interaction. International Journal of Child-Computer Interaction, 11, 62-71. https://doi.org/10.1016/j.ijcci.2016.10.006
  • Neto, L. B., Grijalva, F., Maike, V. R. M. L., Martini, L. C., Florencio, D., Baranauskas, M. C. C., ... & Goldenstein, S. (2016). A kinect-based wearable face recognition system to aid visually impaired users. IEEE Transactions on Human-Machine Systems, 47(1), 52-64. 10.1109/THMS.2016.2604367
  • Ojeda-Castelo, J.J., Piedra-Fernandez, J.A. & Iribarne, L. (2021). A device-interaction model for users with special needs. Multimed Tools Appl, 80, 6675–6710. https://doi.org/10.1007/s11042-020-10026-0
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj, 372. https://doi.org/10.1136/bmj.n71
  • Roy, A. K., Soni, Y., & Dubey, S. (2013, August). Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS) (pp. 298-304). IEEE. https://doi.org/10.1109/GHTC-SAS.2013.6629934
  • Salem, Y., Gropack, S. J., Coffin, D., & Godwin, E. M. (2012). Effectiveness of a low-cost virtual reality system for children with developmental delay: a preliminary randomised single-blind controlled trial. Physiotherapy, 98(3), 189-195. https://doi.org/10.1016/j.physio.2012.06.003
  • Schneider, W. J., & McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (3rd ed., pp. 99–144). The Guilford Press.
  • Schneider, W. J., & McGrew, K. S. (2018). The Cattell–Horn–Carroll abilities (CHC theory) is a comprehensive. Contemporary Intellectual Assessment: Theories, Tests, and Issues, 73.
  • Sevick, M., Eklund, E., Mensch, A., Foreman, M., Standeven, J., & Engsberg, J. (2016). Using free internet videogames in upper extremity motor training for children with cerebral palsy. Behavioral Sciences, 6(2), 10. https://doi.org/10.3390/bs6020010
  • Shih, C. H., Wang, S. H., & Wang, Y. T. (2014). Assisting children with attention deficit hyperactivity disorder to reduce the hyperactive behavior of arbitrary standing in class with a Nintendo Wii remote controller through an active reminder and preferred reward stimulation. Research in developmental disabilities, 35(9), 2069-2076. https://doi.org/10.1016/j.ridd.2014.05.007
  • Skulmowski, A., & Rey, G. D. (2018). Embodied learning: introducing a taxonomy based on bodily engagement and task integration. Cognitive research: principles and implications, 3(1), 1-10. https://doi.org/10.1186/s41235-018-0092-9
  • Tancredi, S., Wang, J., Li, H. T., Yao, C. J., Macfarlan, G., Ryokai, K. (2022, June). Balance Board Math:“Being the graph” through the sense of balance for embodied self-regulation and learning. In Proceedings of the 21st Annual ACM Interaction Design and Children Conference (pp. 137-149). https://doi.org/10.1145/3501712.3529743
  • The Joanna Quality Appraisal Score Sheet. (2017). https://jbi.global/sites/default/files/2019-05/JBI_Critical_Appraisal-Checklist_for_Systematic_Reviews2017_0.pdf.
  • Tran, C., Smith, B., & Buschkuehl, M. (2017). Support of mathematical thinking through embodied cognition: Nondigital and digital approaches. Cognitive Research: Principles and Implications, 2, 1-18. https://doi.org/10.1186/s41235-017-0053-8
  • Torres-Carrion, P., González-González, C., Bravo, C. B., & Infante-Moro, A. (2021). Gestural interaction and reading skills: A case study of people with Down syndrome. Universal Access in the Information Society, 1-12. https://doi.org/10.1007/s10209-021-00855-7
  • Uzuegbunam, N., Wong, W. H., Cheung, S. C. S., & Ruble, L. (2017). MEBook: multimedia social greetings intervention for children with autism spectrum disorders. IEEE Transactions on Learning Technologies, 11(4), 520-535. 10.1109/TLT.2017.2772255
  • Walkington, C., Chelule, G., Woods, D., & Nathan, M. J. (2018). Collaborative Gesture as a Case of Distributed Mathematical Cognition Gesture as Simulation Action Research questions (pp. 552–559). London, UK: International Society of the Learning Sciences (ISLS). https://repository.isls.org//handle/1/902
  • Wang, J. H., Liyanawatta, M., Lee, C. Y., Huang, Y. L., Yang, S. H., & Chen, G. D. (2023, July). Embodied learning through drama-based situatedness using immersive technology in the classroom. In 2023 IEEE International Conference on Advanced Learning Technologies (ICALT) (pp. 274-276). IEEE. https://doi.org/10.1109/ICALT58122. 2023.00086
  • Xu, P., Kennedy, G. A., Zhao, F. Y., Zhang, W. J., & Van Schyndel, R. (2023). Wearable obstacle avoidance electronic travel aids for blind and visually impaired individuals: A systematic review. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3285396
  • Yang, Y., Chen, L., He, W., Sun, D., & Salas-Pilco, S. Z. (2024). Artificial Intelligence for enhancing Special Education for K-12: A decade of trends, themes, and global insights (2013–2023). International Journal of Artificial Intelligence in Education, 1-49. https://doi.org/10.1007/s40593-024-00422-0
  • Yiannoutsou, N., Johnson, R., & Price, S. (2021). Non-visual Virtual Reality: Considerations for the Pedagogical Design of Embodied Mathematical Experiences for Visually Impaired Children. Educational Technology & Society, 24 (2), 151–163. https://www.jstor.org/stable/27004938
  • Zhong, B., Su, S., Liu, X., & Zhan, Z. (2023). A literature review on the empirical studies of technology-based embodied learning. Interactive learning environments, 31(8), 5180-5199. https://doi.org/10.1080/10494820.2021.1999274
There are 64 citations in total.

Details

Primary Language English
Subjects Social and Humanities Education (Excluding Economics, Business and Management)
Journal Section Articles
Authors

Rabia Özdemir Sarıalioğlu 0000-0001-6989-3685

Yasemin Karal 0000-0003-4744-4541

Publication Date March 27, 2025
Submission Date October 30, 2024
Acceptance Date February 6, 2025
Published in Issue Year 2025 Issue: 63

Cite

APA Özdemir Sarıalioğlu, R., & Karal, Y. (2025). Embodied Learning Enhanced with Technology in Special Education: A Systematic Literature Review. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi(63), 924-947. https://doi.org/10.53444/deubefd.1576072