Research Article
BibTex RIS Cite

A CONTEMPORARY PERSPECTIVE ON THE ANALYSIS OF MARITIME ACCIDENTS: AN ANALYSIS EXAMPLE WITH FRAM METHOD

Year 2020, , 69 - 90, 02.06.2020
https://doi.org/10.18613/deudfd.740159

Abstract

Nearly eighty percent of global transportation activities are performed seaborne and this naturally causes an increase in maritime traffic. In spite of the existence of the regulations and recommendations on navigation safety, safety of life and environmental protection laid down by International Maritime Organization (IMO) and presence of international conventions and protocols, maritime accidents still continue to happen. Considering the whole maritime world, in order to minimise risk of accident and to ensure navigation safety and security, learning lessons from the past accidents is as important as abiding by the rules and regulations in force. This study, with an effort to bring novelty to analysis of maritime accidents, utilizes Functional Resonance Analysis Model (FRAM) method to analyse a past maritime accident. FRAM method assumes that accidents result from unexpected combinations (resonance) of normal performance variability. Accident analyses performed by FRAM method will serve as useful guidelines to minimise risk of maritime accidents. Analysis has shown that variables causing the accident do not have a linear relation. Having all necessary navigational aids on the bridge does not necessarily eliminate the risk of accident. One other important finding is that a single substantial reason did not cause the accident; on the contrary, it was caused by combination of reasons. The study also makes a reference to situational awareness as it plays a great role in preventing the accidents.

References

  • Antão, P. ve Guedes Soares, C. (2006). Fault-tree models of accident scenarios of RoPax vessels. International Journal of Automation and Computing, 3(2), 107–116. Antão, P., Guedes Soares, C., Grande, O. ve Trucco, P. (2008). Analysis of maritime accident data with BBN models. S. Martorell, C. Guedes Soares ve J. Barnett (Ed.), Safety, Reliability and Risk Analysis: Theory, Methods and Applications (s. 3265–3273). London: Taylor & Francis Group. Baalisampang, T., Abbassi, R., Garaniya, V., Khan, F. ve Dadashzadeh, M. (2018). Review and analysis of fire and explosion accidents in maritime transportation. Ocean Engineering, 158, 350–366. Baltic Sea Maritime Incidence Response Group (MIRG) (2017). Baltic Sea MIRG Project 2014-2016 Ship Fire Incident Analysis. The Finnish Border Guard, Ministry for Foreign Affairs of Finland. Belmonte, F., Schön, W., Heurley, L. ve Capel, L. (2011). Interdisciplinary safety analysis of complex socio-technical systems based on the functional resonance accident model: an application to railway traffic supervision. Reliability Engineering and System Safety, 96(2), 237–249. Carvalho, P.V.R. (2011). The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience. Reliability Engineering and System Safety, 96(11), 1482–1498. Celik, M., Lavasani, S. M. ve Wang, J. (2010). A risk-based modelling approach to enhance shipping accident investigation, Safety Science, 48(1), 18–27. Darbra, R.M. ve Casal, J. (2004). Historical analysis of accidents in seaports. Safety Science, 42(2), 85–98. Eleftheria, E., Apostolos, P., Markos, V. (2016). Statistical analysis of ship accidents and review of safety level. Safety Science, 85, 282–292. Goerlandt, F. ve Kujala, P. (2011). Traffic simulation based ship collision probability modeling. Reliability Engineering and System Safety, 96(1), 91–107. Hetherington, C., Flin, R., Mearns, K. (2006). Safety in shipping: the human element. Journal of Safety Research, 37(4), 401–411. Hollnagel, E. (2004). Barriers and accident prevention. UK: Ashgate Publishing. Hollnagel, E. (2006). Resilience – the challenge of the unstable. E. Hollnagel, D.D. Woods, ve N. Leveson, (Ed.), Resilience Engineering: Concepts and Precepts (s. 9–18). UK: Ashgate Publishing. Hollnagel, E. (2012). FRAM: The Functional Resonance Analysis Method: Modelling Complex Socio-Technical Systems. UK: Ashgate Publishing. Hollnagel, E., Pruchnicki, S., Woltjer, R. ve Etcher, S. (2008). Analysis of Comair flight 5191 with the functional resonance accident model. In: Proceedings of the 8th International Symposium of the Australian Aviation Psychology Association. Sydney, Australia. IMO (2013). Revised guidelines for formal safety assessment (FSA) for use in the IMO rulemaking process. MSC-MPEC.2/Circ. 12. Kaza Araştırma ve İnceleme Kurulu. (2012). Kaza İnceleme Raporu No: 05/2012. http://www.kaik.gov.tr/, Erişim Tarihi: 18.07.2018. Kontovas, C.A. ve Psaraftis, H.N. (2009). Formal safety assessment: a critical review. Marine technology, 46(1), 45–59. Kuzu, A.C., Akyuz, E. ve Arslan, O. (2019). Application of Fuzzy Fault Tree Analysis (FFTA) to maritime industry: A risk analysing of ship mooring operation. Ocean Engineering, 179, 128–134. Lee, J. ve Chung, H. (2018). A new methodology for accident analysis with human and system interaction based on FRAM: Case studies in maritime domain. Safety Science, 109, 57-66. Li, K.X., Yin, J., Bang, H.S., Yang, Z. ve Wang, J. (2014). Bayesian network with quantitative input for maritime risk analysis. Transportmetrica A: Transport Science, 10(2), 89–118. Merrick, J.R. ve Van Dorp, R. (2006). Speaking the truth in maritime risk assessment. Risk Analysis, 26(1), 223–237. Montewka, J., Goerlandt, F. Ve Kujala, P. (2014). On a systematic perspective on risk for formal safety assessment (FSA). Reliability Engineering and System Safety, 127, 77–85. O'Neil, W.A. (2003). The human element in shipping. WMU Journal of Maritime Affairs, 2(2), 95–97. Patriarca, R., Bergström, J., Gravio, G.D. ve Costantino, F. (2018). Resilience engineering: Current status of the research and future challenges, Safety Science, 102, 79-100. Patriarca, R., Gravio, G.D. ve Costantino, F. (2017). A Monte Carlo evolution of the Functional Resonance Analysis Method (FRAM) to assess performance variability in complex systems. Safety Science, 91, 49–60. Pennie, D., Brook-Carter, N. ve Gibson, W. (2007). Human factors guidance for maintenance. In: Human Factors in Ship Design, Safety and Operation Conference. The Royal Institution of Naval Architects, March, London, UK. Praetorius, G., Hollnagel, E. ve Dahlman, J. (2015). Modelling Vessel Traffic Service to understand resilience in everyday operations. Reliability Engineering and System Safety, 41, 10–21. Psarros, G., Skjong, R. ve Eide, M.S. (2010). Under-reporting of maritime accidents. Accident Analysis and Prevention, 42(2), 619–625. Roberts, S.E., Marlow, P.B. ve Jaremin, B. (2012). Shipping casualties and loss of life in UK merchant shipping, UK second register and foreign flags used by UK shipping companies. Marine Policy, 36(3), 703–712. Ronza, A., Félez, S., Darbra, R.M., Carol, S., Vílchez, J.A. ve Casal, J. (2003). Predicting the frequency of accidents in port areas by developing event trees from historical analysis. Journal of Loss Prevention in the Process Industries, 16(6), 551–560. Sawaragi, T., Horiguchi, Y. ve Hina, A. (2006). Safety analysis of systemic accidents triggered by performance deviation. In: IEEE SICE-ICASE, International Joint Conference. Busan, Korea. Senol, Y.E. ve Sahin, B. (2016). A novel real-time continuous fuzzy fault tree analysis (RCFFTA) model for dynamic environment. Ocean Engineering, 127, 70–81. Smith, D., Veitch, B., Khan, F. ve Taylor, R. (2018). Using the FRAM to Understand Arctic Ship Navigation: Assessing Work Processes During the Exxon Valdez Grounding. Transnav: the International Journal on Marine Navigation and Safety of Sea Transportation, 12(3), 447-457, DOI: 10.12716/1001.12.03.03. Tian, J., Wu, J., Yang, Q. ve Zhao, T. (2016). FRAMA: A safety assessment approach based on Functional Resonance Analysis Method, Safety Science, 85, 41–52. Trucco, P., Cagno, E., Ruggeri, F. ve Grande, O. (2008). A Bayesian Belief Network modelling of organisational factors in risk analysis: a case study in maritime transportation. Reliability Engineering and System Safety, 93(6), 845–856. Ugurlu, O., Yıldırım, U. ve Basar, E. (2015). Analysis of grounding accidents caused by human errors. Journal of Marine Science and Technology, 23(5), 748–760. Woltjer, R. (2008). Resilience assessment based on models of functional resonance. In: Proceedings of the 3rd Symposium on Resilience Engineering. Antibes - Juan - les - Pins, France. Woltjer, R. ve Hollnagel, E. (2007). The Alaska Airlines Flight 261 Accident: a Systemic Analysis of Functional Resonance, International Symposium on Aviation Psychology, Dayton, Ohio. Yang, Z., Bonsall, S. ve Wang, J. (2008). Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Transactions on Reliability, 57(3), 517–528. Zhang, D., Yan, X.P., Yang, Z.L., Wall, A. ve Wang, J. (2013). Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River. Reliability Engineering and System Safety, 118, 93–105. Zhang, G. Ve Thai, V.V. (2016). Expert elicitation and Bayesian Network modeling for shipping accidents: A literature review. Safety Science, 87, 53–62.

DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ

Year 2020, , 69 - 90, 02.06.2020
https://doi.org/10.18613/deudfd.740159

Abstract

Dünyada taşımacılık etkinliklerinin yaklaşık yüzde sekseninin deniz yoluyla yapılıyor olması doğal olarak deniz trafiğinde atışa neden olmaktadır. Uluslararası Denizcilik Örgütü’nün (IMO-International Maritime Organization) seyir emniyeti, insan hayatı ve çevrenin korunmasına yönelik koyduğu kurallar, uluslararası sözleşmeler ve protokoller ve tavsiye kararlarının varlığına rağmen deniz kazaları olmaya devam etmektedir. Denizciliğe bir bütün olarak bakıldığında; kaza riskini en aza indirebilmek, seyir emniyeti ve güvenliğini sağlamak, insan yaşamı ve çevrenin korunmasını garanti altına almak için yürürlükteki kural ve yönergelere uymak kadar, geçmişte yaşanan kaza ve olumsuzluklardan ders çıkarmak gerekliliğinin önemli olduğu görülmektedir. Bu çalışma deniz kazalarının analizine yeni bir soluk getirmek amacıyla, Functional Resonance Analysis Model-İşlevsel Birleştirme Analiz Modeli (FRAM) yöntemiyle geçmişte yaşanmış bir deniz kazasını analiz etmektedir. Normal işleyişlerin (variables) beklenmedik birleşimlerinin/kombinasyonlarının (resonance) kazaya neden olabileceği varsayımını esas alan FRAM yöntemi ile yapılan bu çözümlemeler, gemi kaza riskini azaltmada rehber niteliğinde olacaktır. Yapılan analiz kazanın oluşmasında etken olan değişkenliklerin bağlılıklarının lineer olmadığını, seyir yardımcı cihazlarının kaza riskini ortadan kaldıramadığını, kazanın tek bir nedene değil birçok nedenin bileşkesinden ortaya çıktığını ve kazanın önlenmesinde durumsal farkındalığın önemli bir rol oynadığını ortaya koymuştur.

References

  • Antão, P. ve Guedes Soares, C. (2006). Fault-tree models of accident scenarios of RoPax vessels. International Journal of Automation and Computing, 3(2), 107–116. Antão, P., Guedes Soares, C., Grande, O. ve Trucco, P. (2008). Analysis of maritime accident data with BBN models. S. Martorell, C. Guedes Soares ve J. Barnett (Ed.), Safety, Reliability and Risk Analysis: Theory, Methods and Applications (s. 3265–3273). London: Taylor & Francis Group. Baalisampang, T., Abbassi, R., Garaniya, V., Khan, F. ve Dadashzadeh, M. (2018). Review and analysis of fire and explosion accidents in maritime transportation. Ocean Engineering, 158, 350–366. Baltic Sea Maritime Incidence Response Group (MIRG) (2017). Baltic Sea MIRG Project 2014-2016 Ship Fire Incident Analysis. The Finnish Border Guard, Ministry for Foreign Affairs of Finland. Belmonte, F., Schön, W., Heurley, L. ve Capel, L. (2011). Interdisciplinary safety analysis of complex socio-technical systems based on the functional resonance accident model: an application to railway traffic supervision. Reliability Engineering and System Safety, 96(2), 237–249. Carvalho, P.V.R. (2011). The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience. Reliability Engineering and System Safety, 96(11), 1482–1498. Celik, M., Lavasani, S. M. ve Wang, J. (2010). A risk-based modelling approach to enhance shipping accident investigation, Safety Science, 48(1), 18–27. Darbra, R.M. ve Casal, J. (2004). Historical analysis of accidents in seaports. Safety Science, 42(2), 85–98. Eleftheria, E., Apostolos, P., Markos, V. (2016). Statistical analysis of ship accidents and review of safety level. Safety Science, 85, 282–292. Goerlandt, F. ve Kujala, P. (2011). Traffic simulation based ship collision probability modeling. Reliability Engineering and System Safety, 96(1), 91–107. Hetherington, C., Flin, R., Mearns, K. (2006). Safety in shipping: the human element. Journal of Safety Research, 37(4), 401–411. Hollnagel, E. (2004). Barriers and accident prevention. UK: Ashgate Publishing. Hollnagel, E. (2006). Resilience – the challenge of the unstable. E. Hollnagel, D.D. Woods, ve N. Leveson, (Ed.), Resilience Engineering: Concepts and Precepts (s. 9–18). UK: Ashgate Publishing. Hollnagel, E. (2012). FRAM: The Functional Resonance Analysis Method: Modelling Complex Socio-Technical Systems. UK: Ashgate Publishing. Hollnagel, E., Pruchnicki, S., Woltjer, R. ve Etcher, S. (2008). Analysis of Comair flight 5191 with the functional resonance accident model. In: Proceedings of the 8th International Symposium of the Australian Aviation Psychology Association. Sydney, Australia. IMO (2013). Revised guidelines for formal safety assessment (FSA) for use in the IMO rulemaking process. MSC-MPEC.2/Circ. 12. Kaza Araştırma ve İnceleme Kurulu. (2012). Kaza İnceleme Raporu No: 05/2012. http://www.kaik.gov.tr/, Erişim Tarihi: 18.07.2018. Kontovas, C.A. ve Psaraftis, H.N. (2009). Formal safety assessment: a critical review. Marine technology, 46(1), 45–59. Kuzu, A.C., Akyuz, E. ve Arslan, O. (2019). Application of Fuzzy Fault Tree Analysis (FFTA) to maritime industry: A risk analysing of ship mooring operation. Ocean Engineering, 179, 128–134. Lee, J. ve Chung, H. (2018). A new methodology for accident analysis with human and system interaction based on FRAM: Case studies in maritime domain. Safety Science, 109, 57-66. Li, K.X., Yin, J., Bang, H.S., Yang, Z. ve Wang, J. (2014). Bayesian network with quantitative input for maritime risk analysis. Transportmetrica A: Transport Science, 10(2), 89–118. Merrick, J.R. ve Van Dorp, R. (2006). Speaking the truth in maritime risk assessment. Risk Analysis, 26(1), 223–237. Montewka, J., Goerlandt, F. Ve Kujala, P. (2014). On a systematic perspective on risk for formal safety assessment (FSA). Reliability Engineering and System Safety, 127, 77–85. O'Neil, W.A. (2003). The human element in shipping. WMU Journal of Maritime Affairs, 2(2), 95–97. Patriarca, R., Bergström, J., Gravio, G.D. ve Costantino, F. (2018). Resilience engineering: Current status of the research and future challenges, Safety Science, 102, 79-100. Patriarca, R., Gravio, G.D. ve Costantino, F. (2017). A Monte Carlo evolution of the Functional Resonance Analysis Method (FRAM) to assess performance variability in complex systems. Safety Science, 91, 49–60. Pennie, D., Brook-Carter, N. ve Gibson, W. (2007). Human factors guidance for maintenance. In: Human Factors in Ship Design, Safety and Operation Conference. The Royal Institution of Naval Architects, March, London, UK. Praetorius, G., Hollnagel, E. ve Dahlman, J. (2015). Modelling Vessel Traffic Service to understand resilience in everyday operations. Reliability Engineering and System Safety, 41, 10–21. Psarros, G., Skjong, R. ve Eide, M.S. (2010). Under-reporting of maritime accidents. Accident Analysis and Prevention, 42(2), 619–625. Roberts, S.E., Marlow, P.B. ve Jaremin, B. (2012). Shipping casualties and loss of life in UK merchant shipping, UK second register and foreign flags used by UK shipping companies. Marine Policy, 36(3), 703–712. Ronza, A., Félez, S., Darbra, R.M., Carol, S., Vílchez, J.A. ve Casal, J. (2003). Predicting the frequency of accidents in port areas by developing event trees from historical analysis. Journal of Loss Prevention in the Process Industries, 16(6), 551–560. Sawaragi, T., Horiguchi, Y. ve Hina, A. (2006). Safety analysis of systemic accidents triggered by performance deviation. In: IEEE SICE-ICASE, International Joint Conference. Busan, Korea. Senol, Y.E. ve Sahin, B. (2016). A novel real-time continuous fuzzy fault tree analysis (RCFFTA) model for dynamic environment. Ocean Engineering, 127, 70–81. Smith, D., Veitch, B., Khan, F. ve Taylor, R. (2018). Using the FRAM to Understand Arctic Ship Navigation: Assessing Work Processes During the Exxon Valdez Grounding. Transnav: the International Journal on Marine Navigation and Safety of Sea Transportation, 12(3), 447-457, DOI: 10.12716/1001.12.03.03. Tian, J., Wu, J., Yang, Q. ve Zhao, T. (2016). FRAMA: A safety assessment approach based on Functional Resonance Analysis Method, Safety Science, 85, 41–52. Trucco, P., Cagno, E., Ruggeri, F. ve Grande, O. (2008). A Bayesian Belief Network modelling of organisational factors in risk analysis: a case study in maritime transportation. Reliability Engineering and System Safety, 93(6), 845–856. Ugurlu, O., Yıldırım, U. ve Basar, E. (2015). Analysis of grounding accidents caused by human errors. Journal of Marine Science and Technology, 23(5), 748–760. Woltjer, R. (2008). Resilience assessment based on models of functional resonance. In: Proceedings of the 3rd Symposium on Resilience Engineering. Antibes - Juan - les - Pins, France. Woltjer, R. ve Hollnagel, E. (2007). The Alaska Airlines Flight 261 Accident: a Systemic Analysis of Functional Resonance, International Symposium on Aviation Psychology, Dayton, Ohio. Yang, Z., Bonsall, S. ve Wang, J. (2008). Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Transactions on Reliability, 57(3), 517–528. Zhang, D., Yan, X.P., Yang, Z.L., Wall, A. ve Wang, J. (2013). Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River. Reliability Engineering and System Safety, 118, 93–105. Zhang, G. Ve Thai, V.V. (2016). Expert elicitation and Bayesian Network modeling for shipping accidents: A literature review. Safety Science, 87, 53–62.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Maritime Engineering (Other)
Journal Section Articles
Authors

Elif Bal Beşikçi This is me

Aydın Şıhmantepe This is me

Publication Date June 2, 2020
Published in Issue Year 2020

Cite

APA Bal Beşikçi, E., & Şıhmantepe, A. (2020). DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 12, 69-90. https://doi.org/10.18613/deudfd.740159
AMA Bal Beşikçi E, Şıhmantepe A. DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. June 2020;12:69-90. doi:10.18613/deudfd.740159
Chicago Bal Beşikçi, Elif, and Aydın Şıhmantepe. “DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12, June (June 2020): 69-90. https://doi.org/10.18613/deudfd.740159.
EndNote Bal Beşikçi E, Şıhmantepe A (June 1, 2020) DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12 69–90.
IEEE E. Bal Beşikçi and A. Şıhmantepe, “DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ”, Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 12, pp. 69–90, 2020, doi: 10.18613/deudfd.740159.
ISNAD Bal Beşikçi, Elif - Şıhmantepe, Aydın. “DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12 (June 2020), 69-90. https://doi.org/10.18613/deudfd.740159.
JAMA Bal Beşikçi E, Şıhmantepe A. DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2020;12:69–90.
MLA Bal Beşikçi, Elif and Aydın Şıhmantepe. “DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 12, 2020, pp. 69-90, doi:10.18613/deudfd.740159.
Vancouver Bal Beşikçi E, Şıhmantepe A. DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2020;12:69-90.

Dergimizde yayınlanmış makaleler kaynak gösterilmeden kullanılamaz

Dergideki yazıların bilimsel sorumluluğu yazarlarına aittir.

Denizcilik Fakültesi Dergisinin içeriği tüm kullanıcılara ücretsiz olarak sunulmaktadır.

Dokuz Eylül Üniversitesi Yayınevi Web Sitesi
https://kutuphane.deu.edu.tr/yayinevi/

Dergi İletişim Bilgileri Sayfası
https://dergipark.org.tr/tr/pub/deudfd/contacts


download    download   download

                                               18441     23882   23881      13875                                                                     27606  13880 13876  27184   download