BibTex RIS Cite

GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA

Year 2008, Volume: 23 Issue: 2 - Volume: 23 Issue: 2, 229 - 241, 25.07.2016

Abstract

Bulanık ortamlarda grup kararı vermede kullanılan Fuzzy TOPSIS yöntemi Çok Kriterli Karar Verme (ÇKKV) yöntemlerinden birisidir. Yöntemin uygulanabilmesi için karar vericilere (KV), alternatiflere ve karar kriterlerine gereksinim duyulur. Yöntemin temelini ideal çözümün Fuzzy Pozitif İdeal Çözüm’den (FPİÇ) en yakın, Fuzzy Negatif İdeal Çözüm’den (FNİÇ) ise en uzak mesafede olması oluşturur. FPİÇ ve FNİÇ kullanılarak alternatiflerin yakınlık katsayıları hesaplanır. Yakınlık katsayıları alternatiflerin skorlarını ifade eder. Yakınlık katsayılarına göre alternatifler sıralanır. Çalışmada farklı algoritmalara sahip iki Fuzzy TOPSIS yöntemi karşılaştırılmıştır. Bu amaçla KV’lerin değerlendirmeleri üçgen fuzzy sayılara dönüştürülmüştür. Çalışmanın sonucunda alternatiflerin sıralamasının değişmediği görülmüştür.

References

  • BYRNE, Peter (1995), “Fuzzy Analysis a Vague Way of Dealing With Uncertainty in Real Estate Analysis”, Journal of Property Valuation &Investment, 13(3), 22-41.
  • CHEN, Chen-Tung, LIN, Ching-Torng, ve Sue-Fn HUANG (2005), “A Fuzzy Approach for Supplier Evaluation and Selection in Supply Chain Management”, International Journal of Production Economies, 1-13.
  • CHEN, Chen-Tung (2001), “A Fuzzy Approach to Select the Location of the Distribution Center”, Fuzzy Sets and Systems ,118 ,65-73.
  • CHEN, Chen-Tung (2000), “Extensions of the TOPSIS for Group Decision- Making under Fuzzy Environment”, Fuzzy Sets and Systems, 114, 1-9.
  • CHENG, Steven, CHAN, Christine W., ve Guo H. HUANG (2002), “Using Multiple Criteria Decision Analysis for Supporting Decisions of Solid Waste Management”, Journal of Environment Science Health, 37(6), 975- 990.
  • CHOU, Tsung-Yu ve Gin-Shuh LIANG (2001), “Application of A Fuzzy Multi-Criteria Decision Making Model for Shipping Company Performance Evaluation”, Maritime Policy & Management, 28(4), 375- 392.
  • DAFT, Richard L. (1991), Management, The Dryden Press, 2nd Edition, USA.
  • DEMİR, M. Hulusi, BİRCAN, Bülent ve Hülya TÜTEK (1985), Yönetsel Karar Verme, Bilgehan Basımevi, İzmir.
  • DESPIC, Ozren, ve Slobodan P. SIMONOVIC (2000), “Aggregation Operations for Soft Decision Making in Water Resources”, Fuzzy Sets and Systems, 115, 11-33.
  • HWANG, Ching-Lai ve Ming-Jeng LİN (1987), Group Decision Making Under Multiple Criteria, Springer Verlag, Berlin.
  • KLEYLE, Robert, KORVIN, Andre De, ve Khondkar KARIM (1997), “Investing in New Companies in an Unstable Economic Environment: A Fuzzy Set Approach”, Managerial Finance, 23(6), 68-80.
  • KNIGHT Karla Grace (2001), A Fuzzy Logic Model for Predicting Commercial Building Design Cost Overruns, Master of Science Thesis, University of Alberta.
  • KOÇEL, Tamer (2003), İşletme Yöneticiliği, Beta Basım, İstanbul.
  • LIANG, Yahong (2001), Dynamic Strategic Planning and Justification Systems for Advanced Manufacturing Technology Acquisition, Master of Science Thesis, University of Windsor.
  • MAO, Hongwei (1999), Estimating Labour Productivity Using Fuzzy Set Theory, Master of Science Thesis, University of Alberta.
  • SANCHEZ, Jorge de Andres ve Antonio Terceno GOMEZ (2003), “Applications of Fuzzy Regression in Actuarial Analysis”, The Journal of Risk and Insurance, 70(4), pp. 665-699.
  • TSAUR, Sheng-Hshiung, CHANG, Te-Yi ve Chang-Hua YEN (2002), “The Evaluation of Airline Service Quality by Fuzzy MCDM”, Tourism Management, 23, 107-115.

COMPARISON OF FUZZY TOPSIS METHODS USED GROUP DECISION MAKING AND AN APPLICATION

Year 2008, Volume: 23 Issue: 2 - Volume: 23 Issue: 2, 229 - 241, 25.07.2016

Abstract

Fuzzy TOPSIS method used group decision making in fuzzy environment is one of the Multiple Criteria Decision Making (MCDM) methods. It is needed to decision makers (DM), alternatives and decision criteria in order to apply this method. Foundation of the method is the ideal solution is the shortest distance from Fuzzy Positive Ideal Solution (FPIS) and the farthest distance from Fuzzy Negative Ideal Solution (FNIS). Using FPIS and FNIS, closeness coefficients of alternatives are evaluated. Closeness coefficients express scores of the alternatives. According to closeness coefficients, alternatives are ranked from the best to the worst. In this study, two fuzzy TOPSIS methods having different algorithms are compared. To this purpose, firstly assessments of decision makers are converted to triangular fuzzy numbers. It is seen at the end of the study that ranking orders of alternatives don’t change.

References

  • BYRNE, Peter (1995), “Fuzzy Analysis a Vague Way of Dealing With Uncertainty in Real Estate Analysis”, Journal of Property Valuation &Investment, 13(3), 22-41.
  • CHEN, Chen-Tung, LIN, Ching-Torng, ve Sue-Fn HUANG (2005), “A Fuzzy Approach for Supplier Evaluation and Selection in Supply Chain Management”, International Journal of Production Economies, 1-13.
  • CHEN, Chen-Tung (2001), “A Fuzzy Approach to Select the Location of the Distribution Center”, Fuzzy Sets and Systems ,118 ,65-73.
  • CHEN, Chen-Tung (2000), “Extensions of the TOPSIS for Group Decision- Making under Fuzzy Environment”, Fuzzy Sets and Systems, 114, 1-9.
  • CHENG, Steven, CHAN, Christine W., ve Guo H. HUANG (2002), “Using Multiple Criteria Decision Analysis for Supporting Decisions of Solid Waste Management”, Journal of Environment Science Health, 37(6), 975- 990.
  • CHOU, Tsung-Yu ve Gin-Shuh LIANG (2001), “Application of A Fuzzy Multi-Criteria Decision Making Model for Shipping Company Performance Evaluation”, Maritime Policy & Management, 28(4), 375- 392.
  • DAFT, Richard L. (1991), Management, The Dryden Press, 2nd Edition, USA.
  • DEMİR, M. Hulusi, BİRCAN, Bülent ve Hülya TÜTEK (1985), Yönetsel Karar Verme, Bilgehan Basımevi, İzmir.
  • DESPIC, Ozren, ve Slobodan P. SIMONOVIC (2000), “Aggregation Operations for Soft Decision Making in Water Resources”, Fuzzy Sets and Systems, 115, 11-33.
  • HWANG, Ching-Lai ve Ming-Jeng LİN (1987), Group Decision Making Under Multiple Criteria, Springer Verlag, Berlin.
  • KLEYLE, Robert, KORVIN, Andre De, ve Khondkar KARIM (1997), “Investing in New Companies in an Unstable Economic Environment: A Fuzzy Set Approach”, Managerial Finance, 23(6), 68-80.
  • KNIGHT Karla Grace (2001), A Fuzzy Logic Model for Predicting Commercial Building Design Cost Overruns, Master of Science Thesis, University of Alberta.
  • KOÇEL, Tamer (2003), İşletme Yöneticiliği, Beta Basım, İstanbul.
  • LIANG, Yahong (2001), Dynamic Strategic Planning and Justification Systems for Advanced Manufacturing Technology Acquisition, Master of Science Thesis, University of Windsor.
  • MAO, Hongwei (1999), Estimating Labour Productivity Using Fuzzy Set Theory, Master of Science Thesis, University of Alberta.
  • SANCHEZ, Jorge de Andres ve Antonio Terceno GOMEZ (2003), “Applications of Fuzzy Regression in Actuarial Analysis”, The Journal of Risk and Insurance, 70(4), pp. 665-699.
  • TSAUR, Sheng-Hshiung, CHANG, Te-Yi ve Chang-Hua YEN (2002), “The Evaluation of Airline Service Quality by Fuzzy MCDM”, Tourism Management, 23, 107-115.
There are 17 citations in total.

Details

Other ID JA38EY53RF
Journal Section Articles
Authors

Fatih Ecer This is me

Publication Date July 25, 2016
Published in Issue Year 2008 Volume: 23 Issue: 2 - Volume: 23 Issue: 2

Cite

APA Ecer, F. (2016). GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 23(2), 229-241.
AMA Ecer F. GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. July 2016;23(2):229-241.
Chicago Ecer, Fatih. “GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 23, no. 2 (July 2016): 229-41.
EndNote Ecer F (July 1, 2016) GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 23 2 229–241.
IEEE F. Ecer, “GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA”, Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, vol. 23, no. 2, pp. 229–241, 2016.
ISNAD Ecer, Fatih. “GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 23/2 (July 2016), 229-241.
JAMA Ecer F. GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. 2016;23:229–241.
MLA Ecer, Fatih. “GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, vol. 23, no. 2, 2016, pp. 229-41.
Vancouver Ecer F. GRUP KARARI VERMEDE YARARLANILAN FARKLI FUZZY TOPSIS YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE BİR UYGULAMA. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. 2016;23(2):229-41.