Research Article
BibTex RIS Cite

90Y Noktasal Kaynağının Su ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu

Year 2022, , 581 - 586, 16.05.2022
https://doi.org/10.21205/deufmd.2022247122

Abstract

Günümüzde, beta yayıcı radyonüklidleri içeren radyoterapi yöntemleri yaygın olarak kullanılmakta ve araştırılmaktadır. Tedavinin başarısı, belirlenen tümör alanına, hesaplanan radyasyonu doğru dozda vermekle ilişkilidir. Bu aşamada kişiye özgü dozun hesaplanması ve doz hesaplama yöntemi önem kazanmaktadır. Bu çalışmada, saf beta yayıcı İtriyum 90 (90Y) noktasal kaynağının, su ve akciğer fantomu içerisindeki radyal doz dağılımı Geant4 tabanlı GAMOS Monte Carlo yöntemi ile hesaplanmıştır. Elde edilen sonuçlar International Committee for Radiological Units (ICRU) de yayınlanan referans dozimetrik veriler ile karşılaştırılmış ve uyumlu olduğu görülmüştür.

Supporting Institution

Yok

Project Number

Yok

References

  • M. J. Berger,1971. “MIRD Pamphletno7- Distribution of absorbed dose around point sources of electrons and beta particles in water and other media,” J.Nucl. Med. Cilt. 12(5), s. 23.
  • Berger, M. J. 1973. Improved point kernels for electron and beta-ray dosimetry. Report NBSIR, s 107.
  • Werner, C. J., Bull, J. S., Solomon, C. J., Brown, F. B., McKinney, G. W., Rising, M. E., ... Casswell, L. 2018. MCNP version 6.2 release notes (No. LA-UR-18-20808). Los Alamos National Lab.(LANL). DOI: 10.2172/1419730
  • Kawrakow, I. 2001. The EGSnrc code system, Monte Carlo simulation of electron and photon transport. NRCC Report Pirs-701.
  • Ferrari, A., Sala, P. R., Fasso, A., Ranft, J., Siegen, U. 2005. FLUKA: a multi-particle transport code (No. SLAC-R-773). Stanford Linear Accelerator Center.
  • Baro, J., Sempau, J., Fernández-Varea, J. M., Salvat, F. 1995. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter Nucl Instrum Methods Phys Res B: Beam Interactions with Materials and Atoms, Cilt. 100(1), s. 31-46.
  • Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., ... Geant4 Collaboration. 2003. GEANT4—a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt. 506(3), s. 250-303. DOI: 10.1016/S0168-9002(03)01368-8
  • Allison, J., Amako, K., Apostolakis, J. E. A., Araujo, H. A. A. H., Dubois, P. A., Asai, M. A. A. M., ... Yoshida, H. A. Y. H. 2006. Geant4 developments and applications. IEEE Transactions on nuclear science, Cilt. 53(1), s. 270-278. DOI: 10.1109/TNS.2006.869826
  • Jan, S., Santin, G., Strul, D., Staelens, S., Assie, K., Autret, D., Morel, C. 2004. GATE: a simulation toolkit for PET and SPECT. Physics in Medicine & Biology, Cilt. 49(19), s. 4543. DOI: 10.1088/0031-9155/49/19/007
  • Arce, P., Rato, P., Canadas, M., Lagares, J. I. 2008. GAMOS: a GEANT4-based easy and flexible framework for nuclear medicine applications. Nuclear Science Symposium Conference Record. 19-25 October, Dresden 3162-3168
  • Perez, P. 2010. Dosimetry for Beta-Emitter Radionuclides by Means of Monte Carlo Simulations. 12 Chapter on Nuclear Medicine. Intech. DOI: 10.5772/25287
  • Amato, E., Italiano, A., Minutoli, F., & Baldari, S. 2013. Use of the GEANT4 Monte Carlo to determine three-dimensional dose factors for radionuclide dosimetry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt. 708, s.15-18. DOI: 10.1016/j.nima.2013.01.014
  • Mendes, B. M., Antunes, P. C. G., Branco, I. S. L., do Nascimento, E., Seniwal, B., Fonseca, T. C. F., Yoriyaz, H. 2021. Calculation of dose point kernel values for monoenergetic electrons and beta emitting radionuclides: Intercomparison of Monte Carlo codes. Radiation Physics and Chemistry, Cilt. 181, 109327. DOI: 10.1016/j.radphyschem.2020.109327
  • Simpkin, D. J., Mackie, T. R. 1990. EGS4 Monte Carlo determination of the beta dose kernel in water. Medical physics, Cilt. 17(2), s. 179-186. DOI: 10.1118/1.596565
  • Botta, F., Mairani, A., Battistoni, G., Cremonesi, M., Di Dia, A., Fasso, A., Valente, M. 2011. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy. Medical physics, Cilt. 38(7), s. 3944-3954. DOI: 10.1118/1.3586038
  • Cross, W. G., Freedman, N. O., Wong, P. Y. 1992. Beta-ray dose distributions from point sources in an infinite water medium. Health physics, Cilt. 63(2), s. 160-171. DOI: 10.1097/00004032-199208000-00002
  • Mainegra‐Hing, E., Rogers, D. W. O., Kawrakow, I. 2005. Calculation of photon energy deposition kernels and electron dose point kernels in water. Medical physics, ilt. 32(3), s. 685-699. DOI: 10.1118/1.1861412
  • Dezarn, W. A., Cessna, J. T., DeWerd, L. A., Feng, W., Gates, V. L., Halama, J., ... Salem, R. 2011. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Medical physics, Cilt. 38(8), s. 4824-4845. DOI: 10.1118/1.3608909
  • Walker, L. A. 1964. Radioactive yttrium 90: A review of its properties, biological behavior, and clinical uses. Acta radiologica: therapy, physics, biology, Cilt. 2(4), s. 302-314. DOI: 10.1080/02841866409134063
  • Chinol, M., Franceschini, R., Paganelli, G., Pecorale, A., Paiano, A. 1997. Simple production of Yttrium-90 in a chemical form suitable to clinical grade radioconjugates. In Radioactive Isotopes in Clinical Medicine and Research, s. 327-332 DOI: 10.1016/0883-2889(90)90064-n
  • Nath, R., Amols, H., Coffey, C., Duggan, D., Jani, S., Li, Z., Schwartz, R. 1999. Intravascular brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group no. 60. Medical Physics, Cilt. 26(2), s. 119-152. DOI: 10.1118/1.598496
  • Chiu‐Tsao, S. T., Schaart, D. R., Soares, C. G., Nath, R. 2007. Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149. Medical physics, Cilt. 34(11), s. 4126-4157. DOI: 10.1118/1.2767184
  • Sedda, A. F., Rossi, G., Cipriani, C., Carrozzo, A. M., Donati, P. 2008. Dermatological high‐dose‐rate brachytherapy for the treatment of basal and squamous cell carcinoma. Clinical and Experimental Dermatology: Experimental dermatology, Cilt. 33(6), s. 745-749. DOI: 10.1111/j.1365-2230.2008.02852.x
  • International Commission on Radiation Units and Measurements, “Tissue subtitutes in radiation dosimetry and measurement,” 1989. ICRU Report 44 Internationel Commission on Radiation Unit sand Measurements. Bethesda. DOI: 10.2307/3578840
  • International Commission on Radiation Unitsand Measurements, “Dosimetry of Beta Raysand Low-Energy Photons for Brachy therapy with Sealed Source ,” ICRU Report 72, Cilt. 4. DOI: 10.1093/jicru/ndh020
  • Walters B., Kawrakow, I., Rogers, D. W. O. 2005. DOSXYZnrc users manual. Nrc Report Pirs, Cilt. 794, s. 57-58.
Year 2022, , 581 - 586, 16.05.2022
https://doi.org/10.21205/deufmd.2022247122

Abstract

Project Number

Yok

References

  • M. J. Berger,1971. “MIRD Pamphletno7- Distribution of absorbed dose around point sources of electrons and beta particles in water and other media,” J.Nucl. Med. Cilt. 12(5), s. 23.
  • Berger, M. J. 1973. Improved point kernels for electron and beta-ray dosimetry. Report NBSIR, s 107.
  • Werner, C. J., Bull, J. S., Solomon, C. J., Brown, F. B., McKinney, G. W., Rising, M. E., ... Casswell, L. 2018. MCNP version 6.2 release notes (No. LA-UR-18-20808). Los Alamos National Lab.(LANL). DOI: 10.2172/1419730
  • Kawrakow, I. 2001. The EGSnrc code system, Monte Carlo simulation of electron and photon transport. NRCC Report Pirs-701.
  • Ferrari, A., Sala, P. R., Fasso, A., Ranft, J., Siegen, U. 2005. FLUKA: a multi-particle transport code (No. SLAC-R-773). Stanford Linear Accelerator Center.
  • Baro, J., Sempau, J., Fernández-Varea, J. M., Salvat, F. 1995. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter Nucl Instrum Methods Phys Res B: Beam Interactions with Materials and Atoms, Cilt. 100(1), s. 31-46.
  • Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., ... Geant4 Collaboration. 2003. GEANT4—a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt. 506(3), s. 250-303. DOI: 10.1016/S0168-9002(03)01368-8
  • Allison, J., Amako, K., Apostolakis, J. E. A., Araujo, H. A. A. H., Dubois, P. A., Asai, M. A. A. M., ... Yoshida, H. A. Y. H. 2006. Geant4 developments and applications. IEEE Transactions on nuclear science, Cilt. 53(1), s. 270-278. DOI: 10.1109/TNS.2006.869826
  • Jan, S., Santin, G., Strul, D., Staelens, S., Assie, K., Autret, D., Morel, C. 2004. GATE: a simulation toolkit for PET and SPECT. Physics in Medicine & Biology, Cilt. 49(19), s. 4543. DOI: 10.1088/0031-9155/49/19/007
  • Arce, P., Rato, P., Canadas, M., Lagares, J. I. 2008. GAMOS: a GEANT4-based easy and flexible framework for nuclear medicine applications. Nuclear Science Symposium Conference Record. 19-25 October, Dresden 3162-3168
  • Perez, P. 2010. Dosimetry for Beta-Emitter Radionuclides by Means of Monte Carlo Simulations. 12 Chapter on Nuclear Medicine. Intech. DOI: 10.5772/25287
  • Amato, E., Italiano, A., Minutoli, F., & Baldari, S. 2013. Use of the GEANT4 Monte Carlo to determine three-dimensional dose factors for radionuclide dosimetry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt. 708, s.15-18. DOI: 10.1016/j.nima.2013.01.014
  • Mendes, B. M., Antunes, P. C. G., Branco, I. S. L., do Nascimento, E., Seniwal, B., Fonseca, T. C. F., Yoriyaz, H. 2021. Calculation of dose point kernel values for monoenergetic electrons and beta emitting radionuclides: Intercomparison of Monte Carlo codes. Radiation Physics and Chemistry, Cilt. 181, 109327. DOI: 10.1016/j.radphyschem.2020.109327
  • Simpkin, D. J., Mackie, T. R. 1990. EGS4 Monte Carlo determination of the beta dose kernel in water. Medical physics, Cilt. 17(2), s. 179-186. DOI: 10.1118/1.596565
  • Botta, F., Mairani, A., Battistoni, G., Cremonesi, M., Di Dia, A., Fasso, A., Valente, M. 2011. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy. Medical physics, Cilt. 38(7), s. 3944-3954. DOI: 10.1118/1.3586038
  • Cross, W. G., Freedman, N. O., Wong, P. Y. 1992. Beta-ray dose distributions from point sources in an infinite water medium. Health physics, Cilt. 63(2), s. 160-171. DOI: 10.1097/00004032-199208000-00002
  • Mainegra‐Hing, E., Rogers, D. W. O., Kawrakow, I. 2005. Calculation of photon energy deposition kernels and electron dose point kernels in water. Medical physics, ilt. 32(3), s. 685-699. DOI: 10.1118/1.1861412
  • Dezarn, W. A., Cessna, J. T., DeWerd, L. A., Feng, W., Gates, V. L., Halama, J., ... Salem, R. 2011. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Medical physics, Cilt. 38(8), s. 4824-4845. DOI: 10.1118/1.3608909
  • Walker, L. A. 1964. Radioactive yttrium 90: A review of its properties, biological behavior, and clinical uses. Acta radiologica: therapy, physics, biology, Cilt. 2(4), s. 302-314. DOI: 10.1080/02841866409134063
  • Chinol, M., Franceschini, R., Paganelli, G., Pecorale, A., Paiano, A. 1997. Simple production of Yttrium-90 in a chemical form suitable to clinical grade radioconjugates. In Radioactive Isotopes in Clinical Medicine and Research, s. 327-332 DOI: 10.1016/0883-2889(90)90064-n
  • Nath, R., Amols, H., Coffey, C., Duggan, D., Jani, S., Li, Z., Schwartz, R. 1999. Intravascular brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group no. 60. Medical Physics, Cilt. 26(2), s. 119-152. DOI: 10.1118/1.598496
  • Chiu‐Tsao, S. T., Schaart, D. R., Soares, C. G., Nath, R. 2007. Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149. Medical physics, Cilt. 34(11), s. 4126-4157. DOI: 10.1118/1.2767184
  • Sedda, A. F., Rossi, G., Cipriani, C., Carrozzo, A. M., Donati, P. 2008. Dermatological high‐dose‐rate brachytherapy for the treatment of basal and squamous cell carcinoma. Clinical and Experimental Dermatology: Experimental dermatology, Cilt. 33(6), s. 745-749. DOI: 10.1111/j.1365-2230.2008.02852.x
  • International Commission on Radiation Units and Measurements, “Tissue subtitutes in radiation dosimetry and measurement,” 1989. ICRU Report 44 Internationel Commission on Radiation Unit sand Measurements. Bethesda. DOI: 10.2307/3578840
  • International Commission on Radiation Unitsand Measurements, “Dosimetry of Beta Raysand Low-Energy Photons for Brachy therapy with Sealed Source ,” ICRU Report 72, Cilt. 4. DOI: 10.1093/jicru/ndh020
  • Walters B., Kawrakow, I., Rogers, D. W. O. 2005. DOSXYZnrc users manual. Nrc Report Pirs, Cilt. 794, s. 57-58.
There are 26 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Kadir Akgüngör 0000-0003-1071-4405

Hakan Epik 0000-0001-8462-7246

Project Number Yok
Publication Date May 16, 2022
Published in Issue Year 2022

Cite

APA Akgüngör, K., & Epik, H. (2022). 90Y Noktasal Kaynağının Su ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(71), 581-586. https://doi.org/10.21205/deufmd.2022247122
AMA Akgüngör K, Epik H. 90Y Noktasal Kaynağının Su ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu. DEUFMD. May 2022;24(71):581-586. doi:10.21205/deufmd.2022247122
Chicago Akgüngör, Kadir, and Hakan Epik. “90Y Noktasal Kaynağının Su Ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, no. 71 (May 2022): 581-86. https://doi.org/10.21205/deufmd.2022247122.
EndNote Akgüngör K, Epik H (May 1, 2022) 90Y Noktasal Kaynağının Su ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 71 581–586.
IEEE K. Akgüngör and H. Epik, “90Y Noktasal Kaynağının Su ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu”, DEUFMD, vol. 24, no. 71, pp. 581–586, 2022, doi: 10.21205/deufmd.2022247122.
ISNAD Akgüngör, Kadir - Epik, Hakan. “90Y Noktasal Kaynağının Su Ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/71 (May 2022), 581-586. https://doi.org/10.21205/deufmd.2022247122.
JAMA Akgüngör K, Epik H. 90Y Noktasal Kaynağının Su ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu. DEUFMD. 2022;24:581–586.
MLA Akgüngör, Kadir and Hakan Epik. “90Y Noktasal Kaynağının Su Ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 24, no. 71, 2022, pp. 581-6, doi:10.21205/deufmd.2022247122.
Vancouver Akgüngör K, Epik H. 90Y Noktasal Kaynağının Su ve Karaciğer Fantomu İçindeki Radyal Doz Dağılımının Monte Carlo Yöntemi İle Simülasyonu. DEUFMD. 2022;24(71):581-6.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.