Research Article
BibTex RIS Cite

Corrosion Performance Investigation of Reinforcement Bars Coated with Cement and Mineral Admixture Slurry

Year 2022, , 869 - 874, 19.09.2022
https://doi.org/10.21205/deufmd.2022247216

Abstract

Reinforcement corrosion is considered as one of the most important parameters determining the service life of reinforced concrete structures. In this study, an alternative method that protects reinforced concrete reinforcements against the effects of corrosion has been examined. Within the scope of the study, in addition to the traditionally produced reference reinforced concrete samples, reinforced concrete samples produced with mineral additive cement slurry coated reinforcements were prepared. In addition to silica fume at 30% of the cement amount by mass, blast furnace slag at 25% and 50% of the cement amount was used in mineral added cement slurries. According to the test results, it was determined that the slurry coating application decreased the corrosion potential values and the corrosion current density values of the reinforcements in the samples exposed to the wetting and drying cycles in the sodium chloride environment.

References

  • [1] Baradan, B., Yazıcı, H. ve Ün, H. 2002. Betonarme Yapılarda Kalıcılık (Durabilite) (1. Baskı). İzmir: D.E.Ü. Mühendislik Fakültesi Yayınları.
  • [2] Proverbio, E. & Cigna, R. 1995. Influence of rebar surface condition on polarization resistance measurements in concrete structures. Materials Science Forum, 192-194: 877-882.
  • [3] John, D.G., Coote AT., Treadaway, K.W.J. & Dawson, J.L. 1983. Repair of concrete – A laboratory and exposure site investigation. In A.P. Crane, (Ed.). Corrosion of reinforcement in concrete construction (263-286). London: Halsted Press.
  • [4] Maslehuddin, M., Al-Zahrani, M. M., Abdulguddus, S.U.A., Rehman, S. & Ahsan, S.N. 2002. Effect of steel manufacturing process and atmospheric corrosion on the corrosion resistance of steel bars in concrete. Cement and Concrete Composites, 24, 151-158.
  • [5] Andrade, C., Alonso, C. & Sarria, J. 2002. Corrosion rate evolution in concrete structures exposed to the atmosphere. Cement and Concrete Composites, 24, 55-64.
  • [6] Zivica, V. 2003. Corrosion of reinforcement induced by environment containing chloride and carbondioxide. Bulletin of Materials Science, 26 (6), 605-608.
  • [7] Ghorbani, S. et al. 2018. Improving corrosion resistance of steel rebars in concrete with marble and granite waste dust as partial cement replacement. Construction and Building Materials, 185, 110–119.
  • [8] Heniegal, A. M., Amin, M. and Youssef, H. 2017. Effect of silica fume and steel slag coarse aggregate on the corrosion resistance of steel bars. Construction and Building Materials, 155, 846–851.
  • [9] Zhang, P. et al. 2017. Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation. Construction and Building Materials, 113–121.
  • [10] Sobhani, J., Najimi M. 2013. Electrochemical impedance behavior and transport properties of silica fume contained concrete. Construction and Building Materials, 47, 910-918.
  • [11] ASTM C876-15 Standard Test method for corrosion potentials of uncoated reinforcing steel in concrete. American Society for Testing and Materials. PA- USA.
  • [12] Banar, R., Dashti, P., Zolfagharnasab, A., Ramezanianpour, A.M., Ramezanianpour, A.A. 2022. A comprehensive comparison between using silica fume in the forms of water slurry or blended cement in mortar/concrete. Journal of Building Engineering, 46, 103802.
  • [13] Jin, H., Li, Z., Zhang, W., Liu, J., Xie, R., Tang, L., Zhu, J. 2022. Iodide and chloride ions diffusivity, pore characterization and microstructures of concrete incorporating ground granulated blast furnace slag. Journal of Materials Research and Technology, 16, 302-321.
  • [14] ACI 222R-01. 2001. Protection of Metals in Concrete Against Corrosion. Manual of Concrete Practice. American Concrete Institute.
  • [15] SHRP-S-330. 1993. Condition Evaluation of Concrete Bridges Relative to Reinforcement Corrosion. Strategic Highway Research Program, National Research Council, Washington, DC-USA.
  • [16] Andrade, C. & Alonso, M.C. 2004, Values of corrosion rate of steel in concrete to predict service life of concrete structures, In Gustavo Cragnolino, Narasi Sridhar (Eds) ASTM Symposium on Application of Accelerated Corrosion Tests to Service Life Prediction of Materials, 282-295, American Society for testing and Materials. PA.
  • [17] Andrade, C. & Alonso, C. 2001. On-site measurements of corrosion rate of reinforcements. Construction and Building Materials, 15, 141-145.

Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi

Year 2022, , 869 - 874, 19.09.2022
https://doi.org/10.21205/deufmd.2022247216

Abstract

Günümüzde betonarme yapıların güvenli servis ömrünü belirleyen en önemli parametrelerden biri donatı korozyonu olarak değerlendirilmektedir. Bu çalışmada betonarme donatılarını korozyon etkilerine karşı koruyan alternatif bir yöntem incelenmiştir. Çalışma kapsamında geleneksel olarak üretilmiş referans betonarme numunelerin yanında, mineral katkılı çimento bulamacı kaplanmış donatılarla üretilen betonarme numuneler hazırlanmıştır. Mineral katkılı çimento bulamaçlarında çimento miktarının kütlece %30 oranında silis dumanına ilave olarak çimento miktarının kütlece %25 ve %50 oranlarında yüksek fırın cürufu kullanılmıştır. Deney sonuçlarına göre bulamaç kaplama uygulamasının sodyum klorür çözeltisinde ıslanma kuruma etkisine maruz kalan numunelerde donatıların korozyon potansiyeli değerlerini azalttığı ve korozyon akım yoğunluğu değerlerini düşürdüğü tespit edilmiştir.

References

  • [1] Baradan, B., Yazıcı, H. ve Ün, H. 2002. Betonarme Yapılarda Kalıcılık (Durabilite) (1. Baskı). İzmir: D.E.Ü. Mühendislik Fakültesi Yayınları.
  • [2] Proverbio, E. & Cigna, R. 1995. Influence of rebar surface condition on polarization resistance measurements in concrete structures. Materials Science Forum, 192-194: 877-882.
  • [3] John, D.G., Coote AT., Treadaway, K.W.J. & Dawson, J.L. 1983. Repair of concrete – A laboratory and exposure site investigation. In A.P. Crane, (Ed.). Corrosion of reinforcement in concrete construction (263-286). London: Halsted Press.
  • [4] Maslehuddin, M., Al-Zahrani, M. M., Abdulguddus, S.U.A., Rehman, S. & Ahsan, S.N. 2002. Effect of steel manufacturing process and atmospheric corrosion on the corrosion resistance of steel bars in concrete. Cement and Concrete Composites, 24, 151-158.
  • [5] Andrade, C., Alonso, C. & Sarria, J. 2002. Corrosion rate evolution in concrete structures exposed to the atmosphere. Cement and Concrete Composites, 24, 55-64.
  • [6] Zivica, V. 2003. Corrosion of reinforcement induced by environment containing chloride and carbondioxide. Bulletin of Materials Science, 26 (6), 605-608.
  • [7] Ghorbani, S. et al. 2018. Improving corrosion resistance of steel rebars in concrete with marble and granite waste dust as partial cement replacement. Construction and Building Materials, 185, 110–119.
  • [8] Heniegal, A. M., Amin, M. and Youssef, H. 2017. Effect of silica fume and steel slag coarse aggregate on the corrosion resistance of steel bars. Construction and Building Materials, 155, 846–851.
  • [9] Zhang, P. et al. 2017. Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation. Construction and Building Materials, 113–121.
  • [10] Sobhani, J., Najimi M. 2013. Electrochemical impedance behavior and transport properties of silica fume contained concrete. Construction and Building Materials, 47, 910-918.
  • [11] ASTM C876-15 Standard Test method for corrosion potentials of uncoated reinforcing steel in concrete. American Society for Testing and Materials. PA- USA.
  • [12] Banar, R., Dashti, P., Zolfagharnasab, A., Ramezanianpour, A.M., Ramezanianpour, A.A. 2022. A comprehensive comparison between using silica fume in the forms of water slurry or blended cement in mortar/concrete. Journal of Building Engineering, 46, 103802.
  • [13] Jin, H., Li, Z., Zhang, W., Liu, J., Xie, R., Tang, L., Zhu, J. 2022. Iodide and chloride ions diffusivity, pore characterization and microstructures of concrete incorporating ground granulated blast furnace slag. Journal of Materials Research and Technology, 16, 302-321.
  • [14] ACI 222R-01. 2001. Protection of Metals in Concrete Against Corrosion. Manual of Concrete Practice. American Concrete Institute.
  • [15] SHRP-S-330. 1993. Condition Evaluation of Concrete Bridges Relative to Reinforcement Corrosion. Strategic Highway Research Program, National Research Council, Washington, DC-USA.
  • [16] Andrade, C. & Alonso, M.C. 2004, Values of corrosion rate of steel in concrete to predict service life of concrete structures, In Gustavo Cragnolino, Narasi Sridhar (Eds) ASTM Symposium on Application of Accelerated Corrosion Tests to Service Life Prediction of Materials, 282-295, American Society for testing and Materials. PA.
  • [17] Andrade, C. & Alonso, C. 2001. On-site measurements of corrosion rate of reinforcements. Construction and Building Materials, 15, 141-145.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Hüseyin Yiğiter 0000-0001-7414-8620

Publication Date September 19, 2022
Published in Issue Year 2022

Cite

APA Yiğiter, H. (2022). Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(72), 869-874. https://doi.org/10.21205/deufmd.2022247216
AMA Yiğiter H. Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi. DEUFMD. September 2022;24(72):869-874. doi:10.21205/deufmd.2022247216
Chicago Yiğiter, Hüseyin. “Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, no. 72 (September 2022): 869-74. https://doi.org/10.21205/deufmd.2022247216.
EndNote Yiğiter H (September 1, 2022) Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 72 869–874.
IEEE H. Yiğiter, “Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi”, DEUFMD, vol. 24, no. 72, pp. 869–874, 2022, doi: 10.21205/deufmd.2022247216.
ISNAD Yiğiter, Hüseyin. “Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/72 (September 2022), 869-874. https://doi.org/10.21205/deufmd.2022247216.
JAMA Yiğiter H. Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi. DEUFMD. 2022;24:869–874.
MLA Yiğiter, Hüseyin. “Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 24, no. 72, 2022, pp. 869-74, doi:10.21205/deufmd.2022247216.
Vancouver Yiğiter H. Mineral Katkılı Çimento Bulamacı Kaplanmış Betonarme Donatıların Korozyon Performansının İncelenmesi. DEUFMD. 2022;24(72):869-74.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.