Research Article
BibTex RIS Cite

Eş Kanallı Açısal Presleme (EKAP) ile Deforme Edilen ETP Bakırın Mikroyapı ve Mekanik Özelliklerinin İncelenmesi

Year 2022, , 875 - 885, 19.09.2022
https://doi.org/10.21205/deufmd.2022247217

Abstract

Aşırı plastik deformasyon (APD), malzemelere yüksek basınç altında plastik deformasyon uygulanması, malzemelerin mekanik ve yapısal özelliklerini iyileştirmek için kullanılan yöntemlerdendir. Bu yöntemlerden biri olan Eş Kanallı Açısal Presleme (EKAP), aynı çaplara sahip açısal kesişen iki kanaldan geçen numuneye yüksek basınç uygulayarak mikroyapısal olarak mikron altı veya nano boyutlu tanelere sahip malzemeler üretmek için kullanılan bir tekniktir. Son yıllarda EKAP yöntemini kullanarak nano taneli metalik malzemelerin üretimine yönelik çalışmalar artmıştır. Bu çalışmanın amacı, yüksek basınç altında malzemenin mikroyapı ve mekanik özelliklerinin kademeli olarak değişimini incelemek ve EKAP’ın bu özelliklerin iyileşmesine etkisini belirlemektir. Bu süreç doğrudan malzemenin iç yapısı ve dokusuyla ilgilidir. Uygulanan yöntem ile daha mukavim bir malzeme yapısının elde edilmesi hedeflenmektedir. Çalışmada elektrik uygulamalarında yaygın kullanılan bakır türlerinden ETP (Elektrolitik Tough Pitch) bakır malzeme seçilmiştir. Herhangi bir ısıl işleme tabi tutulmamış 12 mm çapında ve 35 mm uzunluğunda ETP bakır numuneleri, 120 ton kapasiteli hidrolik pres, 120° kanal açısına sahip (Φ=120°, ψ=20°) hassas şekilde işlenmiş kalıp ve EKAP işlem tekrarlarında BC rotası kullanılarak, 2 mm/s'lik presleme hızında ve 200°C kalıp sıcaklığında çalışma gerçekleştirilmiştir. EKAP uygulanan numunelerin kristal yapı, mikroyapı ve mekanik özelliklerdeki değişiklikler incelenmiştir. Elde edilen verilere göre, 4 paso EKAP uygulamasının mikroyapıda tanelerin incelmesi ve mekanik özelliklerde iyileşmenin gerçekleştiği gözlemlenmiştir.

References

  • [1] Valiev, R. Z., & Langdon, T. G. 2006. Principles Of Equal-Channel Angular Pressing as A Processing Tool for Grain Refinement, Progress in materials science, 51(7), 881-981. DOI: 10.1016/j.pmatsci.2006.02.003
  • [2] Yazan, H. A. , Akar, A. & Özmerih, L. 1974. Bakır ve İlgili Ürünlerin Kullanım Alanları, Bilimsel Madencilik Dergisi , 13 (2) , 43-47.
  • [3] Radhi, H. N., Aljassani, A. M., & Mohammed, M. T. 2020. Effect of ECAP on Microstructure, Mechanical and Tribological Properties of Aluminum and Brass Alloys: A Review, Materials Today: Proceedings, 26, 2302-2307. DOI: 10.1016/j.matpr.2020.02.497
  • [4] Morozova, A., Pilipenko, A., Tkachev, M., Lugovskaya, A., Belyakov, A., & Kaibyshev, R. 2021. Effect of deformation techniques on the microstructure and mechanical properties of a copper alloy. In IOP Conference Series: Materials Science and Engineering (Vol. 1014, No. 1, p. 012030). IOP Publishing. DOI: 10.1088/1757-899X/1014/1/012030
  • [5] Öğüt, S., Kaya, H., Kentli, A., & Uçar, M. 2021. Applying hybrid equal channel angular pressing (HECAP) to pure copper using optimized Exp.-ECAP die. The International Journal of Advanced Manufacturing Technology, 116(11), 3859-3876. DOI: 10.1007/s00170-021-07717-9
  • [6] Alawadhi, M. Y., Sabbaghianrad, S., Huang, Y., & Langdon, T. G. 2021. Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature. Materials Science and Engineering: A, 802, 140546. DOI: 10.1016/j.msea.2020.140546
  • [7] Alateyah, A. I., Ahmed, M. M., Zedan, Y., El-Hafez, H. A., Alawad, M. O., & El-Garaihy, W. H. 2021. Experimental and numerical investigation of the ECAP processed copper: Microstructural evolution, crystallographic texture and hardness homogeneity. Metals, 11(4), 607. DOI: 10.3390/met11040607
  • [8] Akbarzadeh, B., Gorji, H., Bakhshi-Jooybari, M., Jamaati, R., & Mirnia, M. J. 2021. Investigation of mechanical and microstructural properties of pure copper processed by combined extrusion-equal channel angular pressing (C-Ex-ECAP). The International Journal of Advanced Manufacturing Technology, 113(7), 2175-2191. DOI:10.1007/s00170-021-06692-5
  • [9] Suresh, M., Sharma, A., More, A. M., Kalsar, R., Bisht, A., Nayan, N., & Suwas, S. 2019. Effect of Equal Channel Angular Pressing (ECAP) on the Evolution of Texture, Microstructure and Mechanical Properties in the Al-Cu-Li alloy AA2195, Journal of Alloys and Compounds, 785, 972-983. DOI: 10.1016/j.jallcom.2019.01.161
  • [10] Wang, W., Pan, Q., Wang, X., Sun, Y., Long, L., & Huang, Z. 2018. Mechanical Properties and Microstructure Evolution of Ultra-High Strength Al-Zn-Mg-Cu Alloy Processed by Room Temperature ECAP with Post Aging, Materials Science and Engineering: A, 731, 195-208. DOI: 10.1016/j.msea.2018.06.047
  • [11] Rezaei, M. R., Shabestari, S. G., & Razavi, S. H. 2017. Effect of ECAP Consolidation Temperature on the Microstructure and Mechanical Properties of Al-Cu-Ti Metallic Glass Reinforced Aluminum Matrix Composite, Journal of Materials Science & Technology, 33(9), 1031-1038. DOI: 10.1016/j.jmst.2016.10.013
  • [12] Shaeri, M. H., Shaeri, M., Ebrahimi, M., Salehi, M. T., & Seyyedein, S. H. 2016. Effect of ECAP Temperature on Microstructure and Mechanical Properties of Al–Zn–Mg–Cu Alloy, Progress in Natural Science: Materials International, 26(2), 182-191. DOI: 10.1016/j.pnsc.2016.03.003
  • [13] Abib, K., Balanos, J. A. M., Alili, B., & Bradai, D. 2016. On the Microstructure and Texture of Cu-Cr-Zr Alloy After Severe Plastic Deformation by ECAP, Materials Characterization, 112, 252-258. DOI: 10.1016/j.matchar.2015.12.026
  • [14] Zhu, C., Ma, A., Jiang, J., Li, X., Song, D., Yang, D., Yuan, Y. & Chen, J. 2014. Effect of ECAP Combined Cold Working on Mechanical Properties and Electrical Conductivity of Conform-Produced Cu–Mg Alloys, Journal of Alloys and Compounds, 582, 135-140. DOI: 10.1016/j.jallcom.2013.08.007
  • [15] Blum, W., Dvořák, J., Kral, P., Eisenlohr, P., & Sklenička, V. 2014. Effect of Grain Refinement by ECAP on Creep of Pure Cu, Materials Science and Engineering: A, 590, 423-432. DOI: 10.1016/j.msea.2013.10.022
  • [16] Khereddine, A. Y., Larbi, F. H., Kawasaki, M., Baudin, T., Bradai, D., & Langdon, T. G. 2013. An Examination of Microstructural Evolution in a Cu–Ni–Si Alloy Processed by Hpt and ECAP, Materials Science and Engineering: A, 576, 149-155. DOI: 10.1016/j.msea.2013.04.004
  • [17] Ko, Y. G., Namgung, S., Lee, B. U., & Shin, D. H. 2010. Mechanical and Electrical Responses of Nanostructured Cu–3 Wt% Ag Alloy Fabricated by ECAP and Cold Rolling, Journal of Alloys and Compounds, 504, S448-S451 DOI: 10.1016/j.jallcom.2010.02.198
  • [18] Gazizov, M., & Kaibyshev, R. 2013. The Precipitation Behavior of an Al–Cu–Mg–Ag Alloy Under ECAP, Materials Science and Engineering: A, 588, 65-75. DOI: 10.1016/j.msea.2013.09.021
  • [19] Jayakumar, P. K., Balasubramanian, K., & Tagore, G. R. 2012. Recrystallisation and Bonding Behaviour of Ultra Fine Grained Copper and Cu–Cr–Zr Alloy Using ECAP, Materials Science and Engineering: A, 538, 7-13. DOI: 10.1016/j.msea.2011.12.069
  • [20] Abd El Aal, M. I. 2011. Influence of the Pre-Homogenization Treatment on the Microstructure Evolution and the Mechanical Properties of Al–Cu Alloys Processed by ECAP, Materials Science And Engineering: A, 528(22-23), 6946-6957. DOI: 10.1016/j.msea.2011.05.072
  • [21] Furukawa, M., Horita, Z., Nemoto, M., & Langdon, T. G. 2001. Processing of Metals by Equal-Channel Angular Pressing, Journal of Materials Science, 36(12), 2835-2843. DOI: 10.1023/A:1017932417043
  • [22] Kamachi, M., Furukawa, M., Horita, Z., & Langdon, T. G. 2003. Equal-Channel Angular Pressing Using Plate Samples, Materials Science And Engineering: A, 361(1-2), 258-266. DOI: 10.1016/S0921-5093(03)00522-7
  • [23] Agwa, M. A., Ali, M. N., & Al-Shorbagy, A. E. 2016. Optimum Processing Parameters for Equal Channel Angular Pressing, Mechanics of Materials, 100, 1-11. DOI: 10.1016/j.mechmat.2016.06.003
  • [24] Gural, A., Tekeli, S., Aytac, A., & Karatas, C. 2011. Construction of an Equal Channel Angular Pressing Unit and Determination of Optimum Parameters for Al-Zn-Mg-Cu Alloy Chosen as a Modal Material, Journal of Polytechnic-Politeknik Dergisi, 14(4), 243-248. DOI: 10.2339/2011.14.4, 243-248
  • [25] Frint, P., Wagner, M. X., Weber, S., Seipp, S., Frint, S., & Lampke, T. 2017. An Experimental Study on Optimum Lubrication for Large-Scale Severe Plastic Deformation of Aluminum-Based Alloys, Journal of Materials Processing Technology, 239, 222-229. DOI: 10.1016/j.jmatprotec.2016.08.032
  • [26] Segal, V. M. 1999. Equal Channel Angular Extrusion: from Macromechanics to Structure Formation, Materials Science and Engineering: A, 271(1-2), 322-333. 10.1016/S0921-5093(99)00248-8
  • [27] Yamashita, A., Yamaguchi, D., Horita, Z., & Langdon, T. G. 2000. Influence of Pressing Temperature on Microstructural Development in Equal-Channel Angular Pressing, Materials Science and Engineering: A, 287(1), 100-106. DOI: 10.1016/S0921-5093(00)00836-4
  • [28] Krishna, S. C., Gangwar, N. K., Jha, A. K., & Pant, B. 2013. On the Prediction of Strength from Hardness for Copper Alloys, Journal of Materials, 2013, 1-6. DOI: 10.1155/2013/352578

Investigation of Microstructure and Mechanical Properties of ETP Copper Deformed by Equal Channel Angular Pressing (ECAP)

Year 2022, , 875 - 885, 19.09.2022
https://doi.org/10.21205/deufmd.2022247217

Abstract

Severe plastic deformation (SPD), the plastic deformation of materials under high pressure, is used to improve the mechanical and structural properties of materials. Equal Channel Angular Pressing (ECAP) is one of these methods used to produce materials microstructure with submicron or nano-sized grains by applying high pressure to the sample passing through two angular intersecting channels with the same diameters. In recent years, studies on the production of nano-grained metallic materials have increased. The aim of this study is to examine the gradual change of the microstructure and mechanical properties of the material under high pressure and to determine the effect of ECAP on the improvement of these properties. This process is directly related to the internal structure and texture of the material. With the applied method, it is aimed to obtain a more durable material structure. Electrolytic Tough Pitch (ETP) copper material, which is one of the copper types commonly used in electrical applications, was chosen in the study. 12 mm diameter and 35 mm long ETP copper samples, which were not subjected to any heat treatment, processed on 2 mm/s pressing speed, 200°C mold temperature and Bc ECAP route using a 120 ton capacity hydraulic press, a precision machined mold which has 120° (Φ=120°, ψ=20°) channel angle. The changes in the crystal structure, microstructure and mechanical properties of the ECAP applied samples were investigated. According to the data obtained, it was observed that the 4 passes of ECAP application resulted in having finer grains in microstructure and improvement in mechanical properties.

References

  • [1] Valiev, R. Z., & Langdon, T. G. 2006. Principles Of Equal-Channel Angular Pressing as A Processing Tool for Grain Refinement, Progress in materials science, 51(7), 881-981. DOI: 10.1016/j.pmatsci.2006.02.003
  • [2] Yazan, H. A. , Akar, A. & Özmerih, L. 1974. Bakır ve İlgili Ürünlerin Kullanım Alanları, Bilimsel Madencilik Dergisi , 13 (2) , 43-47.
  • [3] Radhi, H. N., Aljassani, A. M., & Mohammed, M. T. 2020. Effect of ECAP on Microstructure, Mechanical and Tribological Properties of Aluminum and Brass Alloys: A Review, Materials Today: Proceedings, 26, 2302-2307. DOI: 10.1016/j.matpr.2020.02.497
  • [4] Morozova, A., Pilipenko, A., Tkachev, M., Lugovskaya, A., Belyakov, A., & Kaibyshev, R. 2021. Effect of deformation techniques on the microstructure and mechanical properties of a copper alloy. In IOP Conference Series: Materials Science and Engineering (Vol. 1014, No. 1, p. 012030). IOP Publishing. DOI: 10.1088/1757-899X/1014/1/012030
  • [5] Öğüt, S., Kaya, H., Kentli, A., & Uçar, M. 2021. Applying hybrid equal channel angular pressing (HECAP) to pure copper using optimized Exp.-ECAP die. The International Journal of Advanced Manufacturing Technology, 116(11), 3859-3876. DOI: 10.1007/s00170-021-07717-9
  • [6] Alawadhi, M. Y., Sabbaghianrad, S., Huang, Y., & Langdon, T. G. 2021. Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature. Materials Science and Engineering: A, 802, 140546. DOI: 10.1016/j.msea.2020.140546
  • [7] Alateyah, A. I., Ahmed, M. M., Zedan, Y., El-Hafez, H. A., Alawad, M. O., & El-Garaihy, W. H. 2021. Experimental and numerical investigation of the ECAP processed copper: Microstructural evolution, crystallographic texture and hardness homogeneity. Metals, 11(4), 607. DOI: 10.3390/met11040607
  • [8] Akbarzadeh, B., Gorji, H., Bakhshi-Jooybari, M., Jamaati, R., & Mirnia, M. J. 2021. Investigation of mechanical and microstructural properties of pure copper processed by combined extrusion-equal channel angular pressing (C-Ex-ECAP). The International Journal of Advanced Manufacturing Technology, 113(7), 2175-2191. DOI:10.1007/s00170-021-06692-5
  • [9] Suresh, M., Sharma, A., More, A. M., Kalsar, R., Bisht, A., Nayan, N., & Suwas, S. 2019. Effect of Equal Channel Angular Pressing (ECAP) on the Evolution of Texture, Microstructure and Mechanical Properties in the Al-Cu-Li alloy AA2195, Journal of Alloys and Compounds, 785, 972-983. DOI: 10.1016/j.jallcom.2019.01.161
  • [10] Wang, W., Pan, Q., Wang, X., Sun, Y., Long, L., & Huang, Z. 2018. Mechanical Properties and Microstructure Evolution of Ultra-High Strength Al-Zn-Mg-Cu Alloy Processed by Room Temperature ECAP with Post Aging, Materials Science and Engineering: A, 731, 195-208. DOI: 10.1016/j.msea.2018.06.047
  • [11] Rezaei, M. R., Shabestari, S. G., & Razavi, S. H. 2017. Effect of ECAP Consolidation Temperature on the Microstructure and Mechanical Properties of Al-Cu-Ti Metallic Glass Reinforced Aluminum Matrix Composite, Journal of Materials Science & Technology, 33(9), 1031-1038. DOI: 10.1016/j.jmst.2016.10.013
  • [12] Shaeri, M. H., Shaeri, M., Ebrahimi, M., Salehi, M. T., & Seyyedein, S. H. 2016. Effect of ECAP Temperature on Microstructure and Mechanical Properties of Al–Zn–Mg–Cu Alloy, Progress in Natural Science: Materials International, 26(2), 182-191. DOI: 10.1016/j.pnsc.2016.03.003
  • [13] Abib, K., Balanos, J. A. M., Alili, B., & Bradai, D. 2016. On the Microstructure and Texture of Cu-Cr-Zr Alloy After Severe Plastic Deformation by ECAP, Materials Characterization, 112, 252-258. DOI: 10.1016/j.matchar.2015.12.026
  • [14] Zhu, C., Ma, A., Jiang, J., Li, X., Song, D., Yang, D., Yuan, Y. & Chen, J. 2014. Effect of ECAP Combined Cold Working on Mechanical Properties and Electrical Conductivity of Conform-Produced Cu–Mg Alloys, Journal of Alloys and Compounds, 582, 135-140. DOI: 10.1016/j.jallcom.2013.08.007
  • [15] Blum, W., Dvořák, J., Kral, P., Eisenlohr, P., & Sklenička, V. 2014. Effect of Grain Refinement by ECAP on Creep of Pure Cu, Materials Science and Engineering: A, 590, 423-432. DOI: 10.1016/j.msea.2013.10.022
  • [16] Khereddine, A. Y., Larbi, F. H., Kawasaki, M., Baudin, T., Bradai, D., & Langdon, T. G. 2013. An Examination of Microstructural Evolution in a Cu–Ni–Si Alloy Processed by Hpt and ECAP, Materials Science and Engineering: A, 576, 149-155. DOI: 10.1016/j.msea.2013.04.004
  • [17] Ko, Y. G., Namgung, S., Lee, B. U., & Shin, D. H. 2010. Mechanical and Electrical Responses of Nanostructured Cu–3 Wt% Ag Alloy Fabricated by ECAP and Cold Rolling, Journal of Alloys and Compounds, 504, S448-S451 DOI: 10.1016/j.jallcom.2010.02.198
  • [18] Gazizov, M., & Kaibyshev, R. 2013. The Precipitation Behavior of an Al–Cu–Mg–Ag Alloy Under ECAP, Materials Science and Engineering: A, 588, 65-75. DOI: 10.1016/j.msea.2013.09.021
  • [19] Jayakumar, P. K., Balasubramanian, K., & Tagore, G. R. 2012. Recrystallisation and Bonding Behaviour of Ultra Fine Grained Copper and Cu–Cr–Zr Alloy Using ECAP, Materials Science and Engineering: A, 538, 7-13. DOI: 10.1016/j.msea.2011.12.069
  • [20] Abd El Aal, M. I. 2011. Influence of the Pre-Homogenization Treatment on the Microstructure Evolution and the Mechanical Properties of Al–Cu Alloys Processed by ECAP, Materials Science And Engineering: A, 528(22-23), 6946-6957. DOI: 10.1016/j.msea.2011.05.072
  • [21] Furukawa, M., Horita, Z., Nemoto, M., & Langdon, T. G. 2001. Processing of Metals by Equal-Channel Angular Pressing, Journal of Materials Science, 36(12), 2835-2843. DOI: 10.1023/A:1017932417043
  • [22] Kamachi, M., Furukawa, M., Horita, Z., & Langdon, T. G. 2003. Equal-Channel Angular Pressing Using Plate Samples, Materials Science And Engineering: A, 361(1-2), 258-266. DOI: 10.1016/S0921-5093(03)00522-7
  • [23] Agwa, M. A., Ali, M. N., & Al-Shorbagy, A. E. 2016. Optimum Processing Parameters for Equal Channel Angular Pressing, Mechanics of Materials, 100, 1-11. DOI: 10.1016/j.mechmat.2016.06.003
  • [24] Gural, A., Tekeli, S., Aytac, A., & Karatas, C. 2011. Construction of an Equal Channel Angular Pressing Unit and Determination of Optimum Parameters for Al-Zn-Mg-Cu Alloy Chosen as a Modal Material, Journal of Polytechnic-Politeknik Dergisi, 14(4), 243-248. DOI: 10.2339/2011.14.4, 243-248
  • [25] Frint, P., Wagner, M. X., Weber, S., Seipp, S., Frint, S., & Lampke, T. 2017. An Experimental Study on Optimum Lubrication for Large-Scale Severe Plastic Deformation of Aluminum-Based Alloys, Journal of Materials Processing Technology, 239, 222-229. DOI: 10.1016/j.jmatprotec.2016.08.032
  • [26] Segal, V. M. 1999. Equal Channel Angular Extrusion: from Macromechanics to Structure Formation, Materials Science and Engineering: A, 271(1-2), 322-333. 10.1016/S0921-5093(99)00248-8
  • [27] Yamashita, A., Yamaguchi, D., Horita, Z., & Langdon, T. G. 2000. Influence of Pressing Temperature on Microstructural Development in Equal-Channel Angular Pressing, Materials Science and Engineering: A, 287(1), 100-106. DOI: 10.1016/S0921-5093(00)00836-4
  • [28] Krishna, S. C., Gangwar, N. K., Jha, A. K., & Pant, B. 2013. On the Prediction of Strength from Hardness for Copper Alloys, Journal of Materials, 2013, 1-6. DOI: 10.1155/2013/352578
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Ebubekir Atan 0000-0001-7422-3416

Publication Date September 19, 2022
Published in Issue Year 2022

Cite

APA Atan, E. (2022). Eş Kanallı Açısal Presleme (EKAP) ile Deforme Edilen ETP Bakırın Mikroyapı ve Mekanik Özelliklerinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(72), 875-885. https://doi.org/10.21205/deufmd.2022247217
AMA Atan E. Eş Kanallı Açısal Presleme (EKAP) ile Deforme Edilen ETP Bakırın Mikroyapı ve Mekanik Özelliklerinin İncelenmesi. DEUFMD. September 2022;24(72):875-885. doi:10.21205/deufmd.2022247217
Chicago Atan, Ebubekir. “Eş Kanallı Açısal Presleme (EKAP) Ile Deforme Edilen ETP Bakırın Mikroyapı Ve Mekanik Özelliklerinin İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, no. 72 (September 2022): 875-85. https://doi.org/10.21205/deufmd.2022247217.
EndNote Atan E (September 1, 2022) Eş Kanallı Açısal Presleme (EKAP) ile Deforme Edilen ETP Bakırın Mikroyapı ve Mekanik Özelliklerinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 72 875–885.
IEEE E. Atan, “Eş Kanallı Açısal Presleme (EKAP) ile Deforme Edilen ETP Bakırın Mikroyapı ve Mekanik Özelliklerinin İncelenmesi”, DEUFMD, vol. 24, no. 72, pp. 875–885, 2022, doi: 10.21205/deufmd.2022247217.
ISNAD Atan, Ebubekir. “Eş Kanallı Açısal Presleme (EKAP) Ile Deforme Edilen ETP Bakırın Mikroyapı Ve Mekanik Özelliklerinin İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/72 (September 2022), 875-885. https://doi.org/10.21205/deufmd.2022247217.
JAMA Atan E. Eş Kanallı Açısal Presleme (EKAP) ile Deforme Edilen ETP Bakırın Mikroyapı ve Mekanik Özelliklerinin İncelenmesi. DEUFMD. 2022;24:875–885.
MLA Atan, Ebubekir. “Eş Kanallı Açısal Presleme (EKAP) Ile Deforme Edilen ETP Bakırın Mikroyapı Ve Mekanik Özelliklerinin İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 24, no. 72, 2022, pp. 875-8, doi:10.21205/deufmd.2022247217.
Vancouver Atan E. Eş Kanallı Açısal Presleme (EKAP) ile Deforme Edilen ETP Bakırın Mikroyapı ve Mekanik Özelliklerinin İncelenmesi. DEUFMD. 2022;24(72):875-8.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.