Ag içeren dolgu metalleri ile elde edilen bakır/pirinç lehim bağlantısının mikroyapısı ve mekanik performansı üzerine çalışma
Year 2022,
, 1033 - 1047, 19.09.2022
Gökhan Şafak
Simge İrizalp
,
Burçak Kardelen Köroğlu
Abstract
Ag, sert lehim dolgu metallerinde faydalı bir alaşım elementi olarak kullanılır. Ag ilavesinin, dolgu metallerinin erime sıcaklığı, ıslanabilirliği, iletkenliği ve mekanik özelliği üzerinde pozitif bir etkiye sahip olduğu açıktır. Bu nedenle, Ag çok pahalı olmasına rağmen birçok araştırma ve üretimde hala yaygın olarak kullanılmaktadır. Bu çalışmada farklı seviyelerde Ag içeren dolgu metalleri kullanılarak hem dayanımı yüksek hem de uygun maliyetli sert lehim bağlantı elde edilmesine odaklanılmıştır. Farklı seviyelerde Ag-Cu-Zn ve Cd içeren dolgu metalleri ile elde edilen sert lehim bağlantılarının ergime-katılaşma sıcaklıkları, mekanik özellikleri ve mikroyapıları incelenmiştir. Bu çalışmada, iklimlendirme sektöründe soğutma-ısıtma yapan cihazlarda bakır-pirinç malzeme ikilisi olarak kullanılan borular ve kapakların sert lehimleme işlemlerinde uygun Ag içeriği detaylı olarak araştırılmıştır. Bağlantıların tipik mikroyapısı incelendiğinde, esas olarak katı çözeltiler ve ötektik fazlardan oluştuğu görülmüştür. Bakır ve pirinç bölgelerindeki arayüzeyler hem Ag içeriğinden hem de ergime sıcaklıklarından etkilenmiştir. Sert lehimlenmiş malzeme çiftlerinin patlatma testi ile hasara uğradığı gerilme değeri maksimum 345 MPa olarak bulunmuştur ve hasarın bakır boruda oluştuğu raporlanmıştır. Bunun yanında hiç Ag içermeyen lehim teli kullanıldığında nihai ürünün lehim bölgesinden hasara uğradığı raporlanmıştır. Düşük Ag içeriğine sahip sert lehim bağlantısının dayanımının bakır borudan daha yüksek olması sebebiyle nihai üründe %5 Ag içeriğinin yeterli performansı sağladığı bulunmuştur.. Sonuçlar, ayrıca, Ag ilavesinin artmasıyla mikrosertliğin arttığını, % 5Ag içeren metalle elde edilen bağlantının sertliğinin %21 artış göstermiş, %40 Ag içeren metalle elde edilen bağlantı sertliğinin %57’ ye varan bir artış sergilemiştir. Bu da Ag ilavesinin dayanımı iyileştirdiğini ancak, %5 gibi bir oranda içermesinin lehim bağlantısında yeterli performansı sağladığını göstermiştir.
Supporting Institution
Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Thanks
Bu çalışma, Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (MCBÜ, BAP, Proje Numarası: 2018077) tarafından desteklenmiştir.
References
- [1] B. Stalin, M. Ravichandran, K. Vadivel, J. Vairamuthu, Optimization of brazing process parameters in butt joint of brass 319 using Taguchi method, Mater. Today Proc. 21 (2020) 237–243. https://doi.org/10.1016/j.matpr.2019.04.226.
- [2] Kaya Y, Lehimleme Tekniğinde Otomasyon ve İşlem Parametrelerinin Etkilerinin İncelenmesi, Yıldız Teknik Üniversitesi, 2008.
- [3] J.A. Ares, Metal: Forming, Forging, and Soldering Techniques, Barron’s E, 2006.
- [4] R.W. Messler, Joining of materials and structures: from pragmatic process to enabling technology, Elsevier, 2004.
- [5] A.E. Miller, V. R., Schwaneke, Interfacial Compositions of Silver Filler Metals on Copper, Brass, and Steel, Weld. J. 57 (1978).
- [6] J.Z. Zhou, S. Huang, J. Sheng, J.Z. Lu, C.D. Wang, K.M. Chen, H.Y. Ruan, H.S. Chen, Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061-T6 aluminum subject to laser peening, Mater. Sci. Eng. A. 539 (2012) 360–368. https://doi.org/10.1016/j.msea.2012.01.125.
- [7] H. Wang, S. Xue, Effect of Ag on the properties of solders and brazing filler metals, J. Mater. Sci. Mater. Electron. 27 (2016) 1–13. https://doi.org/10.1007/s10854-015-3747-z.
- [8] D.K. Basri, L. Sisamouth, Y. Farazila, Y. Miyazawa, T. Ariga, Brazeability and mechanical properties of Ag–Cu–Sn brazing filler metals on copper-brazed joint, Mater. Res. Innov. 18 (2014) S6-429-S6-432. https://doi.org/10.1179/1432891714Z.000000000992.
- [9] D.M. Jacobson, Principles of brazing, ASM International, United States of America, 2005.
- [10] C. Ma, S. Xue, B. Wang, Study on novel Ag-Cu-Zn-Sn brazing filler metal bearing Ga, J. Alloys Compd. 688 (2016) 854–862. https://doi.org/10.1016/j.jallcom.2016.07.255.
- [11] T. Watanabe, A. Yanagisawa, T. Sasaki, Development of Ag based brazing filler metal with low melting point, Sci. Technol. Weld. Join. 16 (2011) 502–508. https://doi.org/10.1179/1362171811Y.0000000037.
- [12] W.M. Long, G.X. Zhang, Q.K. Zhang, In situ synthesis of high strength Ag brazing filler metals during induction brazing process, Scr. Mater. 110 (2016) 41–43. https://doi.org/10.1016/j.scriptamat.2015.07.041.
- [13] F. Sui, W. Long, S. Liu, G. Zhang, L. Bao, H. Li, Y. Chen, Effect of calcium on the microstructure and mechanical properties of brazed joint using Ag–Cu–Zn brazing filler metal, Mater. Des. 46 (2013) 605–608. https://doi.org/10.1016/j.matdes.2012.11.021.
- [14] T. Zaharinie, Z. Huda, M.F. Izuan, M. Hamdi, Development of optimum process parameters and a study of the effects of surface roughness on brazing of copper, Appl. Surf. Sci. 331 (2015) 127–131. https://doi.org/10.1016/j.apsusc.2015.01.078.
- [15] Y.. Shabtay, M. Ainali, A. Lea, New brazing processes using anneal-resistant copper and brass alloys, Mater. Des. 25 (2004) 83–89. https://doi.org/10.1016/S0261-3069(03)00162-6.
- [16] J.A.R. Vianco, P. T., Properties of ternary Sn-Ag-Bi solder alloys: Part I—Thermal properties and microstructural analysis, J. Electron. Mater. 28 (1999) 1127–1137.
- [17] Reid, M., Effect of Ag content on the microstructure of Sn‐Ag‐Cu based solder alloys, Solder. Surf. Mt. Technol. (2008).
- [18] He, Peng, Effect of alloy element on microstructure and impact toughness of Sn-57 Bi lead-free solders, J. Mater. Eng. 10 (2010) 13–17.
- [19] S.P.G. Chakravarty, I., “Formation of intermetallics during brazing of alumina with Fe, Ni and Cr using Ag–30 Cu–10 Sn as filler metal.,” Mater. Charact. 51.4 (2003) 235–241.
- [20] Çınar S., Bakır Ve Alaşımlarının Sert Lehiminde Farklı Kimyasal Kompozisyonlara Sahip İlave Tellerin Bağlantının Mekanik Ve Mikroyapı Özelliklerine Etkisi, Gazi Üniversitesi, 2010.
- [21] A.A. 8M/A5. 8:201.-A. 1, A.A.N. Standard, Specification for Filler Metals for Brazing and Braze Welding, in: Specif. Fill. Met. Brazing Braze Weld., 10th Editi, 8669 Doral Blvd., Suite 130, Doral, FL 33126, 2011.
- [22] Lenntech, Chemical elements listed by electronegativity, (n.d.) https://www.lenntech.com/periodic-chart-elements/e.
- [23] J. Cao, L.X. Zhang, H.Q. Wang, L.Z. Wu, J.C. Feng, Effect of Silver Content on Microstructure and Properties of Brass/steel Induction Brazing Joint Using Ag-Cu-Zn-Sn Filler Metal, J. Mater. Sci. Technol. 27 (2011) 377–381. https://doi.org/10.1016/S1005-0302(11)60077-7.
- [24] W.. Hanson, K.. Ironside, J.. Fernie, Active metal brazing of zirconia, Acta Mater. 48 (2000) 4673–4676. https://doi.org/10.1016/S1359-6454(00)00256-1.
- [25] G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates, J. Mater. Sci. Mater. Electron. 21 (2010) 421–440. https://doi.org/10.1007/s10854-010-0086-y.
- [26] M.G. Cho, Y.S. Park, S.-K. Seo, K.-W. Paik, H.M. Lee, Effect of Ag Addition on the Ripening Growth of ${\rm Cu}_{6}{\rm Sn}_{5}$ Grains at the Interface of Sn-xAg-0.5Cu/Cu During a Reflow, IEEE Trans. Components, Packag. Manuf. Technol. 1 (2011) 1939–1946. https://doi.org/10.1109/TCPMT.2011.2160181.
- [27] Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, G.Y. Tang, Effects of dynamic electropulsing on microstructure and elongation of a Zn–Al alloy, Mater. Sci. Eng. A. 501 (2009) 125–132. https://doi.org/10.1016/j.msea.2008.09.080.
- [28] L. Wierzbicki, W. Malec, J. Stobrawa, B. Cwolek, B. Juszczyk, Studies Into New, Environmentally Friendly Ag-Cu-Zn-Sn Brazing Alloys of Low Silver Content, Arch. Metall. Mater. 56 (2011). https://doi.org/10.2478/v10172-011-0017-9.
- [29] G. Vamadevan, F.F. Kraft, Processing effects in aluminum micro-channel tube for brazed R744 heat exchangers, J. Mater. Process. Technol. 191 (2007) 30–33. https://doi.org/10.1016/j.jmatprotec.2007.03.040.
- [30] M.G. Li, D.Q. Sun, X.M. Qiu, S.Q. Yin, Effect of tin on melting temperature and microstructure of Ag–Cu–Zn–Sn filler metals, Mater. Sci. Technol. 21 (2005) 1318–1322. https://doi.org/10.1179/174328405X66932.
- [31] X.X. Wang, Effect of electroplated tin coating on properties of BAg50CuZn brazing filler metal, Trans. China Weld. Inst. 35 (2014) 61–64.
- [32] X. Wang, J. Peng, D. Cui, Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals, J. Mater. Eng. Perform. 27 (2018) 2233–2238. https://doi.org/10.1007/s11665-018-3321-y.
- [33] O. Bodur, Lehim alaşımlarının sınıflandırılması, kısa gösterilişleri ve Türkiye‟deki durum, 1994.
- [34] B. Oğuz, Sert lehimleme teori uygulama, İstanbul, 1988.
- [35] A.R. Lashin, M. Mossa, A. El-Bediwi, M. Kamal, Study of some physical properties of the rapidly solidified Sn–Sb–Cu–Zn alloys, Mater. Des. 43 (2013) 322–326. https://doi.org/10.1016/j.matdes.2012.06.014.
Study on microstructure and mechanical performance of copper/brass brazing joint with Ag brazing fillers
Year 2022,
, 1033 - 1047, 19.09.2022
Gökhan Şafak
Simge İrizalp
,
Burçak Kardelen Köroğlu
Abstract
Ag is used as a useful alloying element in brazing filler metals. It is clear that the addition of Ag has a positive effect on the melting temperature, wettability, conductivity and mechanical property of the filler metals. For this reason, although Ag is very expensive, it is still widely used in many research and production. In this study, it was focused on obtaining both high strength and cost-effective brazing joints by using filler metals containing different levels of Ag. Melting-solidification temperatures, mechanical properties and microstructures of brazing joints obtained with filler metals containing different levels of Ag-Cu-Zn and Cd were investigated. In this study, the appropriate Ag content in brazing processes of pipes and caps used as copper-brass material pairing in cooling-heating devices in the air conditioning system was investigated in detail. When the typical microstructure of the joints was examined, it was observed that it mainly consisted of solid solutions and eutectic phases. The interfaces in the copper and brass regions were affected by both Ag content and melting temperatures. As a result of the burst test, the maximum stress value at which the brazed material pairs were damaged was found to be 345 MPa, and the damage was reported to occur in the copper pipe. In addition, it has been reported that the final product is damaged from the brazed zone when Ag-free solder wire is used. It was found that 5%Ag content provides sufficient performance in the final product due to the fact that the strength of the braze joint with low-Ag content is higher than the copper tube. The results also showed that the micro-hardness increased with the increase of Ag-addition, the hardness of the joint with the filler metal containing 5%Ag increased by 21%. The joint hardness obtained with filler metal containing 40% Ag showed an increase of up to 57%. This showed that the addition of Ag improves the strength, but its 5% Ag content provides sufficient performance in the brazing joint.
References
- [1] B. Stalin, M. Ravichandran, K. Vadivel, J. Vairamuthu, Optimization of brazing process parameters in butt joint of brass 319 using Taguchi method, Mater. Today Proc. 21 (2020) 237–243. https://doi.org/10.1016/j.matpr.2019.04.226.
- [2] Kaya Y, Lehimleme Tekniğinde Otomasyon ve İşlem Parametrelerinin Etkilerinin İncelenmesi, Yıldız Teknik Üniversitesi, 2008.
- [3] J.A. Ares, Metal: Forming, Forging, and Soldering Techniques, Barron’s E, 2006.
- [4] R.W. Messler, Joining of materials and structures: from pragmatic process to enabling technology, Elsevier, 2004.
- [5] A.E. Miller, V. R., Schwaneke, Interfacial Compositions of Silver Filler Metals on Copper, Brass, and Steel, Weld. J. 57 (1978).
- [6] J.Z. Zhou, S. Huang, J. Sheng, J.Z. Lu, C.D. Wang, K.M. Chen, H.Y. Ruan, H.S. Chen, Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061-T6 aluminum subject to laser peening, Mater. Sci. Eng. A. 539 (2012) 360–368. https://doi.org/10.1016/j.msea.2012.01.125.
- [7] H. Wang, S. Xue, Effect of Ag on the properties of solders and brazing filler metals, J. Mater. Sci. Mater. Electron. 27 (2016) 1–13. https://doi.org/10.1007/s10854-015-3747-z.
- [8] D.K. Basri, L. Sisamouth, Y. Farazila, Y. Miyazawa, T. Ariga, Brazeability and mechanical properties of Ag–Cu–Sn brazing filler metals on copper-brazed joint, Mater. Res. Innov. 18 (2014) S6-429-S6-432. https://doi.org/10.1179/1432891714Z.000000000992.
- [9] D.M. Jacobson, Principles of brazing, ASM International, United States of America, 2005.
- [10] C. Ma, S. Xue, B. Wang, Study on novel Ag-Cu-Zn-Sn brazing filler metal bearing Ga, J. Alloys Compd. 688 (2016) 854–862. https://doi.org/10.1016/j.jallcom.2016.07.255.
- [11] T. Watanabe, A. Yanagisawa, T. Sasaki, Development of Ag based brazing filler metal with low melting point, Sci. Technol. Weld. Join. 16 (2011) 502–508. https://doi.org/10.1179/1362171811Y.0000000037.
- [12] W.M. Long, G.X. Zhang, Q.K. Zhang, In situ synthesis of high strength Ag brazing filler metals during induction brazing process, Scr. Mater. 110 (2016) 41–43. https://doi.org/10.1016/j.scriptamat.2015.07.041.
- [13] F. Sui, W. Long, S. Liu, G. Zhang, L. Bao, H. Li, Y. Chen, Effect of calcium on the microstructure and mechanical properties of brazed joint using Ag–Cu–Zn brazing filler metal, Mater. Des. 46 (2013) 605–608. https://doi.org/10.1016/j.matdes.2012.11.021.
- [14] T. Zaharinie, Z. Huda, M.F. Izuan, M. Hamdi, Development of optimum process parameters and a study of the effects of surface roughness on brazing of copper, Appl. Surf. Sci. 331 (2015) 127–131. https://doi.org/10.1016/j.apsusc.2015.01.078.
- [15] Y.. Shabtay, M. Ainali, A. Lea, New brazing processes using anneal-resistant copper and brass alloys, Mater. Des. 25 (2004) 83–89. https://doi.org/10.1016/S0261-3069(03)00162-6.
- [16] J.A.R. Vianco, P. T., Properties of ternary Sn-Ag-Bi solder alloys: Part I—Thermal properties and microstructural analysis, J. Electron. Mater. 28 (1999) 1127–1137.
- [17] Reid, M., Effect of Ag content on the microstructure of Sn‐Ag‐Cu based solder alloys, Solder. Surf. Mt. Technol. (2008).
- [18] He, Peng, Effect of alloy element on microstructure and impact toughness of Sn-57 Bi lead-free solders, J. Mater. Eng. 10 (2010) 13–17.
- [19] S.P.G. Chakravarty, I., “Formation of intermetallics during brazing of alumina with Fe, Ni and Cr using Ag–30 Cu–10 Sn as filler metal.,” Mater. Charact. 51.4 (2003) 235–241.
- [20] Çınar S., Bakır Ve Alaşımlarının Sert Lehiminde Farklı Kimyasal Kompozisyonlara Sahip İlave Tellerin Bağlantının Mekanik Ve Mikroyapı Özelliklerine Etkisi, Gazi Üniversitesi, 2010.
- [21] A.A. 8M/A5. 8:201.-A. 1, A.A.N. Standard, Specification for Filler Metals for Brazing and Braze Welding, in: Specif. Fill. Met. Brazing Braze Weld., 10th Editi, 8669 Doral Blvd., Suite 130, Doral, FL 33126, 2011.
- [22] Lenntech, Chemical elements listed by electronegativity, (n.d.) https://www.lenntech.com/periodic-chart-elements/e.
- [23] J. Cao, L.X. Zhang, H.Q. Wang, L.Z. Wu, J.C. Feng, Effect of Silver Content on Microstructure and Properties of Brass/steel Induction Brazing Joint Using Ag-Cu-Zn-Sn Filler Metal, J. Mater. Sci. Technol. 27 (2011) 377–381. https://doi.org/10.1016/S1005-0302(11)60077-7.
- [24] W.. Hanson, K.. Ironside, J.. Fernie, Active metal brazing of zirconia, Acta Mater. 48 (2000) 4673–4676. https://doi.org/10.1016/S1359-6454(00)00256-1.
- [25] G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates, J. Mater. Sci. Mater. Electron. 21 (2010) 421–440. https://doi.org/10.1007/s10854-010-0086-y.
- [26] M.G. Cho, Y.S. Park, S.-K. Seo, K.-W. Paik, H.M. Lee, Effect of Ag Addition on the Ripening Growth of ${\rm Cu}_{6}{\rm Sn}_{5}$ Grains at the Interface of Sn-xAg-0.5Cu/Cu During a Reflow, IEEE Trans. Components, Packag. Manuf. Technol. 1 (2011) 1939–1946. https://doi.org/10.1109/TCPMT.2011.2160181.
- [27] Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, G.Y. Tang, Effects of dynamic electropulsing on microstructure and elongation of a Zn–Al alloy, Mater. Sci. Eng. A. 501 (2009) 125–132. https://doi.org/10.1016/j.msea.2008.09.080.
- [28] L. Wierzbicki, W. Malec, J. Stobrawa, B. Cwolek, B. Juszczyk, Studies Into New, Environmentally Friendly Ag-Cu-Zn-Sn Brazing Alloys of Low Silver Content, Arch. Metall. Mater. 56 (2011). https://doi.org/10.2478/v10172-011-0017-9.
- [29] G. Vamadevan, F.F. Kraft, Processing effects in aluminum micro-channel tube for brazed R744 heat exchangers, J. Mater. Process. Technol. 191 (2007) 30–33. https://doi.org/10.1016/j.jmatprotec.2007.03.040.
- [30] M.G. Li, D.Q. Sun, X.M. Qiu, S.Q. Yin, Effect of tin on melting temperature and microstructure of Ag–Cu–Zn–Sn filler metals, Mater. Sci. Technol. 21 (2005) 1318–1322. https://doi.org/10.1179/174328405X66932.
- [31] X.X. Wang, Effect of electroplated tin coating on properties of BAg50CuZn brazing filler metal, Trans. China Weld. Inst. 35 (2014) 61–64.
- [32] X. Wang, J. Peng, D. Cui, Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals, J. Mater. Eng. Perform. 27 (2018) 2233–2238. https://doi.org/10.1007/s11665-018-3321-y.
- [33] O. Bodur, Lehim alaşımlarının sınıflandırılması, kısa gösterilişleri ve Türkiye‟deki durum, 1994.
- [34] B. Oğuz, Sert lehimleme teori uygulama, İstanbul, 1988.
- [35] A.R. Lashin, M. Mossa, A. El-Bediwi, M. Kamal, Study of some physical properties of the rapidly solidified Sn–Sb–Cu–Zn alloys, Mater. Des. 43 (2013) 322–326. https://doi.org/10.1016/j.matdes.2012.06.014.