Research Article
BibTex RIS Cite

Investigation of the Effects of the Geomagnetic Storm and the Düzce Earthquake Observed in November 2021 on the Geomagnetic Field

Year 2023, , 239 - 253, 26.01.2023
https://doi.org/10.21205/deufmd.2023257319

Abstract

In this study, the relationship between earthquakes and geomagnetic field data was investigated. As an experimental study, firstly, the effects of the geomagnetic storm that occurred during 3-4 November 2021, and in the second stage of the study, the effects of the 17 November 2021 Düzce earthquake (M=4,8) on geomagnetic fields were investigated. For this, data of X, Y and Z components of geomagnetic field measured at observation (IZN) and reference (PEG and PAG) magnetometer stations were used. The temporal resolution of these components is 60 seconds In order to detect geomagnetic anomalies caused by geomagnetic storm and earthquake, firstly, geomagnetic field change rate (ROG) and geomagnetic field change rate index (ROGI) were calculated for geomagnetic field components (X, Y, Z) of each station. Then, correlation coefficients (r) of station pairs (IZN-PEG, PEG-PAG and IZN-PAG) were calculated using ROGI(X, Y, Z) values in order to statistically determine the relationship between daily changes of X, Y and Z components. The results obtained from the observation and reference magnetometer stations for X, Y, Z were compared with each other. It was determined that ROGI(X), ROGI(Y) and ROGI(Z) values calculated for IZN, PEG and PAG have a very similar daily variation during the geomagnetic storm. During 17 November 2021, ROGI(Y) values of PEG and PAG stations have a compatible daily variation with each other while the ROGI(Y) values of IZN station have an increase (anomaly) between 08:15 UT (Universal Time) and 10:10 UT. From these results, it is predicted that the anomaly detected for IZN can be evaluated as a regional premise geomagnetic anomaly with seismomagnetic origin possibly related to the 17 November Düzce earthquake.

References

  • Moore, G.W. 1964. Magnetic Disturbances preceding the 1964 Alaska Earthquake, Nature, Cilt. 203, s. 508-509. DOI: 10.1038/203508b0.
  • Rikitake, T. 1987. Earthquake precursors in Japan: Precursor time and detectability, Tectonophysics, Cilt. 136, s. 265-282. DOI: 10.1016/0040-1951(87)90029-1.
  • Nagata, T. 1969. Effects of a uniaxial compression on remanent magnetization of igneous rocks, Pure and Applied Geophysics, Cilt. 78, s.100-109. DOI: 10.1007/BF00874778.
  • Nagata, T. 1969. Anisotropic magnetic susceptibility of rocks under mechanical stresses, Pure and Applied Geophysics, Cilt. 78, s. 110-122.
  • Revol, J., Day, Ron., Fuller, M. D. 1977. Magnetic behavior of magnetite and rocks stressed to failure-Relation to earthquake prediction, Earth and Planetary Science Letters, Cilt. 37, s. 296-306. DOI:10.1016/0012-821X(77)90175-3.
  • Kapička, A., Petrovsky, E., Pohl, J. 1997. Magnetic anisotropy of rock under stress conditions of the Earth's crust (laboratory modeling), Physics and Chemistry of the Earth, Cilt. 22, s. 157-160. DOI: 10.1016/S0079-1946(97)00095-5.
  • Mele, G., Meloni, A., Palangio, P. 1994. A tectonomagnetic effect detected in Central Italy, Annals Geophysics, Cilt. 37, s. 17-25. DOI: 10.4401/ag-4233.
  • Meloni, A., Mele, G., Palangio, P. 1998. Tectonomagnetic field observations in central Italy 1989–1995, Physics of the Earth and Planetary Interiors, Cilt. 105, s. 145-152. DOI: 10.1016/S0031-9201(97)00087-3
  • Hattori, K. 2004. ULF Geomagnetic Changes Associated with Large Earthquakes, Terrestrial Atmospheric and Oceanic Sciences, Cilt.15, s. 329-360. DOI: 10.3319/TAO.2004.15.3.329(EP).
  • Chen, C., H., Liu, J.Y., Lin, P.Y., Yen, H.Y., Hattori, K., Liang, W.T., Chen, Y. I., Yeh, Y. H., Zeng, X. 2010. Pre-seismic geomagnetic anomaly and earthquake location, Tectonophysics, Cilt. 489, s. 240-247. DOI: 10.1016/j.tecto.2010.04.018.
  • Takla, E. M., Yumoto, K., Liu, J. Y., Kakinami, Y., Uozumi, T., Abe, S., Ikeda, A. 2011. Anomalous Geomagnetic Variations Possibly Linked with the Taiwan Earthquake (Mw = 6.4) on 19 December 2009, International Journal of Geophysics, Cilt. 2011, s. 1-10. DOI: 10.1155/2011/848467.
  • Takla, E.M., Yumoto, K., Okano, S., Uozumi, T., Abe, S. 2013. The signature of the 2011 Tohoku mega earthquake on the geomagnetic field measurements in Japan, National Research Institute of Astronomy and Geophysics , Cilt. 2, s. 185-195. DOI: 10.1016/j.nrjag.2013.08.001.
  • Cordaro, E. G., Aravena, P.V., Laroze, D. 2021. Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory, Natural Hazards and Earth System Sciences, Cilt. 21, s. 1785-1806. DOI: 10.5194/nhess-21-1785-2021.
  • Stanica, D.A., Stanica, D., Błecki, J., Ernst, T., Jozwiak, W., Słominski J. 2018. Pre-seismic geomagnetic and ionosphere signatures related to the Mw5.7 earthquake occurred in Vrancea zone on September 24, 2016, Acta Geophysica, Cilt. 66, s. 167–177. DOI: 10.1007/s11600-018-0115-4.
  • Xu, G., Han, P., Huang, Q., Hattori, K., Febriani, F., Yamaguchi, H. 2013. Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake (Mw9.0), Journal of Asian Earth Sciences, Cilt. 77, s. 59–65. DOI: 10.1016/j.jseaes.2013.08.011.
  • Takla, E.M., Yoshikawa, A., Uozumi, T. 2018. A Possible Influence of Seismic Activity on Diurnal Geomagnetic Variations, Journal of Geology and Geophysics, Cilt.7, s. 1-6. DOI:10.4172/2381-8719.1000451
  • Prölss, G.W. 2004. Physics of the Earth’s Space Environment. 1st, Berlin: Springer, 514s.
  • Tascione, T.F. 2010. Introduction to the Space Environment. 2nd, Los Angeles: Krieger Publishing Company, 172s.
  • Masci, F., Thomas, J.N. 2015. Are there new findings in the search for ULF magnetic precursors to earthquakes?, Journal of Geophysical Research: Space Physics, Cilt. 120, s. 10.289-10.304. DOI: 10.1002/2015JA021336.
  • Yusupov, V., 2018. Anomalies of geomagnetic field related to natural and technogenic events in Charvak area, Geodesy and Geodynamics, Cilt. 9, s. 367-371. DOI: 10.1016/j.geog.2018.05.002.
  • Dobrovolsky, I. R., Zubkov, S.I., Myachkin, V.I. 1979. Estimation of the size of earthquake preparation zones, Pure and Applied Geophysics, Cilt. 117, s. 1025-1044. DOI: 10.1007/BF00876083.
  • International Real-time Magnetic Observatory Network (INTERMAGNET). "Observatories". https://www.intermagnet.org/imos/imotblobs-eng.php. (Erişim Tarihi: 16.04.2022).
  • International Service of Geomagnetic Indices (ISGI). "Geomagnetic Indices". http://isgi.unistra.fr. (Erişim Tarihi: 16.04.2022).
  • Aurora Borealis Observatory. https://auroraborealisobservatory.com/2020/12/28/the-kp-index-any-good-for-aurora-chasing/. (Erişim Tarihi: 16.04.2022).
  • Pi, X., Mannucci, A.J., Lindqwister, U.J., Ho, C.M. 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophysical Research Letters, Cilt. 24, s. 2283-2286. DOI: 10.1029/97GL02273.
  • Mendillo, M., Lin, B., Aarons, J. 2000. The application of GPS observations to equatorial aeronomy, Radio Science, Cilt. 35 s. 885-904. DOI: 10.1029/1999RS002208.
  • Timoçin, E., Inyurt, S., Temuçin, H., Ansari, K., Jamjareegulgarn, P. 2020. Investigation of equatorial plasma bubble irregularities under different geomagnetic conditions during the equinoxes and the occurrence of plasma bubble suppression, Acta Astronautica, Cilt. 177, s. 341-350. DOI: 10.1016/j.actaastro.2020.08.007.
  • Timoçin, E., Temuçin, H., Inyurt, S. 2022. The Seasonal Characteristics of Equatorial Plasma Bubbles in Conjugate Hemispheres During 2015, Geomagnetism and Aeronomy, 2022, Cilt. 62, s. 309–323. DOI: 10.1134/S0016793222030203.
  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T. Vasyliunas, V.M. 1994. What is a geomagnetic storm?, Journal of Geophysical Research Atmospheres: Space Physics, Cilt. 99, s. 5771-5792. DOI: 10.1029/93JA02867.
  • Venkatesan, D., Ananth, A.G., Graumann, H., Pillai, S. 1991. Relationship between solar and geomagnetic activity, Journal of Geophysical Research Atmospheres: Space Physics, Cilt. 96, s. 9811-9813. DOI: 10.1016/j.jastp.2004.03.011.
  • Lakhina, G.S., Tsurutani, B.T. 2016. Geomagnetic storms: historical perspective to modern view, Geoscience Letters, Cilt. 3:5, s. 1-11. DOI: 10.1186/s40562-016-0037-4.
  • Adebesin, B.O. 2016. Investigation into the linear relationship between the AE, Dst and ap indices during different magnetic and solar activity conditions, Acta Geodaetica et Geophysica, Cilt. 51, s. 315–331. DOI: 10.1007/s40328-015-0128-2.

Kasım 2021'de Gözlemlenen Jeomanyetik Fırtına ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması

Year 2023, , 239 - 253, 26.01.2023
https://doi.org/10.21205/deufmd.2023257319

Abstract

Bu çalışmada, depremlerin jeomanyetik alan verileri ile ilişkisi incelenmiştir. Öncelikle konu kapsamında deneysel çalışma olarak 3-4 Kasım 2021 boyunca meydana gelen jeomanyetik fırtınanın etkileri, çalışmanın ikinci aşamasında ise 17 Kasım 2021 Düzce depreminin (M=4,8) jeomanyetik alanlar üzerindeki etkileri araştırılmıştır. Bunun için gözlem (IZN) ve referans (PEG ve PAG) manyetometre istasyonlarında ölçülmüş jeomanyetik alanın X, Y ve Z bileşenlerinin verileri kullanılmıştır. Bu bileşenlerin zamansal çözünürlüğü 60 saniyedir. Ayrıca, jeomanyetik aktivite göstergesi olarak küresel jeomanyetik aktivite indisi (Kp) verileri kullanılmıştır. İlk önce Jeomanyetik fırtınadan ve depremden kaynaklı jeomanyetik anomalileri tespit etmek için istasyonlardaki jeomanyetik alan bileşenlerinin (X, Y, Z) jeomanyetik alan değişim oranı (ROG) ve jeomanyetik alan değişim oranı indeksi (ROGI) hesaplanmıştır. Daha sonra X, Y ve Z bileşenlerinin günlük değişimleri arasındaki ilişkiyi istatistiksel olarak tespit etmek için ROGI(X, Y, Z) değerlerini kullanılarak istasyon çiftlerinin (IZN-PEG, PEG-PAG ve IZN-PAG) korelasyon katsayıları (r) hesaplanmıştır. X, Y ve Z için gözlem ve referans manyetometre istasyonlarından elde edilen sonuçlar birbirleriyle karşılaştırılmıştır. Jeomanyetik fırtına boyunca IZN, PEG ve PAG için hesaplanan ROGI(X), ROGI(Y) ve ROGI(Z) değerlerinin çok benzer bir günlük değişime sahip oldukları tespit edilmiştir. 17 Kasım 2021 boyunca PEG ve PAG istasyonlarının ROGI(Y) değerleri birbirleriyle uyumlu bir günlük değişime sahipken, 08:15 EZ (Evrensel Zaman) ile 10:10 EZ arasında IZN istasyonunun ROGI(Y) değerlerinde bir artış (anomali) tespit edilmiştir. Bu sonuçlardan, IZN için tespit edilen anomalinin 17 Kasım Düzce depremi ile olası ilişkili sismomanyetik kaynaklı bölgesel öncül bir jeomanyetik anomali olarak değerlendirilebileceği öngörülmektedir.

References

  • Moore, G.W. 1964. Magnetic Disturbances preceding the 1964 Alaska Earthquake, Nature, Cilt. 203, s. 508-509. DOI: 10.1038/203508b0.
  • Rikitake, T. 1987. Earthquake precursors in Japan: Precursor time and detectability, Tectonophysics, Cilt. 136, s. 265-282. DOI: 10.1016/0040-1951(87)90029-1.
  • Nagata, T. 1969. Effects of a uniaxial compression on remanent magnetization of igneous rocks, Pure and Applied Geophysics, Cilt. 78, s.100-109. DOI: 10.1007/BF00874778.
  • Nagata, T. 1969. Anisotropic magnetic susceptibility of rocks under mechanical stresses, Pure and Applied Geophysics, Cilt. 78, s. 110-122.
  • Revol, J., Day, Ron., Fuller, M. D. 1977. Magnetic behavior of magnetite and rocks stressed to failure-Relation to earthquake prediction, Earth and Planetary Science Letters, Cilt. 37, s. 296-306. DOI:10.1016/0012-821X(77)90175-3.
  • Kapička, A., Petrovsky, E., Pohl, J. 1997. Magnetic anisotropy of rock under stress conditions of the Earth's crust (laboratory modeling), Physics and Chemistry of the Earth, Cilt. 22, s. 157-160. DOI: 10.1016/S0079-1946(97)00095-5.
  • Mele, G., Meloni, A., Palangio, P. 1994. A tectonomagnetic effect detected in Central Italy, Annals Geophysics, Cilt. 37, s. 17-25. DOI: 10.4401/ag-4233.
  • Meloni, A., Mele, G., Palangio, P. 1998. Tectonomagnetic field observations in central Italy 1989–1995, Physics of the Earth and Planetary Interiors, Cilt. 105, s. 145-152. DOI: 10.1016/S0031-9201(97)00087-3
  • Hattori, K. 2004. ULF Geomagnetic Changes Associated with Large Earthquakes, Terrestrial Atmospheric and Oceanic Sciences, Cilt.15, s. 329-360. DOI: 10.3319/TAO.2004.15.3.329(EP).
  • Chen, C., H., Liu, J.Y., Lin, P.Y., Yen, H.Y., Hattori, K., Liang, W.T., Chen, Y. I., Yeh, Y. H., Zeng, X. 2010. Pre-seismic geomagnetic anomaly and earthquake location, Tectonophysics, Cilt. 489, s. 240-247. DOI: 10.1016/j.tecto.2010.04.018.
  • Takla, E. M., Yumoto, K., Liu, J. Y., Kakinami, Y., Uozumi, T., Abe, S., Ikeda, A. 2011. Anomalous Geomagnetic Variations Possibly Linked with the Taiwan Earthquake (Mw = 6.4) on 19 December 2009, International Journal of Geophysics, Cilt. 2011, s. 1-10. DOI: 10.1155/2011/848467.
  • Takla, E.M., Yumoto, K., Okano, S., Uozumi, T., Abe, S. 2013. The signature of the 2011 Tohoku mega earthquake on the geomagnetic field measurements in Japan, National Research Institute of Astronomy and Geophysics , Cilt. 2, s. 185-195. DOI: 10.1016/j.nrjag.2013.08.001.
  • Cordaro, E. G., Aravena, P.V., Laroze, D. 2021. Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory, Natural Hazards and Earth System Sciences, Cilt. 21, s. 1785-1806. DOI: 10.5194/nhess-21-1785-2021.
  • Stanica, D.A., Stanica, D., Błecki, J., Ernst, T., Jozwiak, W., Słominski J. 2018. Pre-seismic geomagnetic and ionosphere signatures related to the Mw5.7 earthquake occurred in Vrancea zone on September 24, 2016, Acta Geophysica, Cilt. 66, s. 167–177. DOI: 10.1007/s11600-018-0115-4.
  • Xu, G., Han, P., Huang, Q., Hattori, K., Febriani, F., Yamaguchi, H. 2013. Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake (Mw9.0), Journal of Asian Earth Sciences, Cilt. 77, s. 59–65. DOI: 10.1016/j.jseaes.2013.08.011.
  • Takla, E.M., Yoshikawa, A., Uozumi, T. 2018. A Possible Influence of Seismic Activity on Diurnal Geomagnetic Variations, Journal of Geology and Geophysics, Cilt.7, s. 1-6. DOI:10.4172/2381-8719.1000451
  • Prölss, G.W. 2004. Physics of the Earth’s Space Environment. 1st, Berlin: Springer, 514s.
  • Tascione, T.F. 2010. Introduction to the Space Environment. 2nd, Los Angeles: Krieger Publishing Company, 172s.
  • Masci, F., Thomas, J.N. 2015. Are there new findings in the search for ULF magnetic precursors to earthquakes?, Journal of Geophysical Research: Space Physics, Cilt. 120, s. 10.289-10.304. DOI: 10.1002/2015JA021336.
  • Yusupov, V., 2018. Anomalies of geomagnetic field related to natural and technogenic events in Charvak area, Geodesy and Geodynamics, Cilt. 9, s. 367-371. DOI: 10.1016/j.geog.2018.05.002.
  • Dobrovolsky, I. R., Zubkov, S.I., Myachkin, V.I. 1979. Estimation of the size of earthquake preparation zones, Pure and Applied Geophysics, Cilt. 117, s. 1025-1044. DOI: 10.1007/BF00876083.
  • International Real-time Magnetic Observatory Network (INTERMAGNET). "Observatories". https://www.intermagnet.org/imos/imotblobs-eng.php. (Erişim Tarihi: 16.04.2022).
  • International Service of Geomagnetic Indices (ISGI). "Geomagnetic Indices". http://isgi.unistra.fr. (Erişim Tarihi: 16.04.2022).
  • Aurora Borealis Observatory. https://auroraborealisobservatory.com/2020/12/28/the-kp-index-any-good-for-aurora-chasing/. (Erişim Tarihi: 16.04.2022).
  • Pi, X., Mannucci, A.J., Lindqwister, U.J., Ho, C.M. 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophysical Research Letters, Cilt. 24, s. 2283-2286. DOI: 10.1029/97GL02273.
  • Mendillo, M., Lin, B., Aarons, J. 2000. The application of GPS observations to equatorial aeronomy, Radio Science, Cilt. 35 s. 885-904. DOI: 10.1029/1999RS002208.
  • Timoçin, E., Inyurt, S., Temuçin, H., Ansari, K., Jamjareegulgarn, P. 2020. Investigation of equatorial plasma bubble irregularities under different geomagnetic conditions during the equinoxes and the occurrence of plasma bubble suppression, Acta Astronautica, Cilt. 177, s. 341-350. DOI: 10.1016/j.actaastro.2020.08.007.
  • Timoçin, E., Temuçin, H., Inyurt, S. 2022. The Seasonal Characteristics of Equatorial Plasma Bubbles in Conjugate Hemispheres During 2015, Geomagnetism and Aeronomy, 2022, Cilt. 62, s. 309–323. DOI: 10.1134/S0016793222030203.
  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T. Vasyliunas, V.M. 1994. What is a geomagnetic storm?, Journal of Geophysical Research Atmospheres: Space Physics, Cilt. 99, s. 5771-5792. DOI: 10.1029/93JA02867.
  • Venkatesan, D., Ananth, A.G., Graumann, H., Pillai, S. 1991. Relationship between solar and geomagnetic activity, Journal of Geophysical Research Atmospheres: Space Physics, Cilt. 96, s. 9811-9813. DOI: 10.1016/j.jastp.2004.03.011.
  • Lakhina, G.S., Tsurutani, B.T. 2016. Geomagnetic storms: historical perspective to modern view, Geoscience Letters, Cilt. 3:5, s. 1-11. DOI: 10.1186/s40562-016-0037-4.
  • Adebesin, B.O. 2016. Investigation into the linear relationship between the AE, Dst and ap indices during different magnetic and solar activity conditions, Acta Geodaetica et Geophysica, Cilt. 51, s. 315–331. DOI: 10.1007/s40328-015-0128-2.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Erdinç Timoçin 0000-0002-3648-2035

Hüseyin Temuçin 0000-0001-6688-1996

Oya Pamukçu 0000-0003-3564-1919

Publication Date January 26, 2023
Published in Issue Year 2023

Cite

APA Timoçin, E., Temuçin, H., & Pamukçu, O. (2023). Kasım 2021’de Gözlemlenen Jeomanyetik Fırtına ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(73), 239-253. https://doi.org/10.21205/deufmd.2023257319
AMA Timoçin E, Temuçin H, Pamukçu O. Kasım 2021’de Gözlemlenen Jeomanyetik Fırtına ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması. DEUFMD. January 2023;25(73):239-253. doi:10.21205/deufmd.2023257319
Chicago Timoçin, Erdinç, Hüseyin Temuçin, and Oya Pamukçu. “Kasım 2021’de Gözlemlenen Jeomanyetik Fırtına Ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 73 (January 2023): 239-53. https://doi.org/10.21205/deufmd.2023257319.
EndNote Timoçin E, Temuçin H, Pamukçu O (January 1, 2023) Kasım 2021’de Gözlemlenen Jeomanyetik Fırtına ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 73 239–253.
IEEE E. Timoçin, H. Temuçin, and O. Pamukçu, “Kasım 2021’de Gözlemlenen Jeomanyetik Fırtına ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması”, DEUFMD, vol. 25, no. 73, pp. 239–253, 2023, doi: 10.21205/deufmd.2023257319.
ISNAD Timoçin, Erdinç et al. “Kasım 2021’de Gözlemlenen Jeomanyetik Fırtına Ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/73 (January 2023), 239-253. https://doi.org/10.21205/deufmd.2023257319.
JAMA Timoçin E, Temuçin H, Pamukçu O. Kasım 2021’de Gözlemlenen Jeomanyetik Fırtına ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması. DEUFMD. 2023;25:239–253.
MLA Timoçin, Erdinç et al. “Kasım 2021’de Gözlemlenen Jeomanyetik Fırtına Ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 73, 2023, pp. 239-53, doi:10.21205/deufmd.2023257319.
Vancouver Timoçin E, Temuçin H, Pamukçu O. Kasım 2021’de Gözlemlenen Jeomanyetik Fırtına ve Düzce Depreminin Jeomanyetik Alan Üzerindeki Etkilerinin Araştırılması. DEUFMD. 2023;25(73):239-53.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.