Research Article
BibTex RIS Cite

Site Response Predictions at Atakoy Downhole Array

Year 2023, , 739 - 750, 27.09.2023
https://doi.org/10.21205/deufmd.2023257517

Abstract

Site response analyses are seen to be the reliable way of reproducing and predicting earthquake input motions. The analyses are generally performed by adopting equivalent linear or nonlinear approaches solving the problem in time or frequency domains. Instrumented geotechnical downhole arrays, in this regard, are very important as to obtaining earthquake data through the soil deposits. This data can eventually be used to verify the approaches developed for site response analyses. In this study, the input motions of the 24.05.2014 (Aegean) earthquake event recorded at relatively recently installed Atakoy geotechnical downhole array are assessed. Moreover, the recorded input motions at the bottom bedrock level of the downhole array are simulated in the East-West and North-South directions. The site response analyses are conducted based on frequency domain equivalent linear approach. The peak ground acceleration and the spectral accelerations of the predicted input motions are compared with the recorded ones at 70 m, 50 m, 25 m and at the ground surface. The results indicate that the spectral acceleration predictions can be simulated well until the depth of 50 m. At 25 m and at ground surface, the predictions are always greater than the recorded one. However, the predictions still exhibits good indication of actual values in the North-South direction. In terms of peak ground acceleration and shear strain profiles, the predictions display the soil layers featured with different soil properties. The equivalent linear approach appears to be suited reasonably well in site response analysis.

References

  • [1] Kramer, S. L. 1996. Geotechnical earthquake engineering. Pearson Education India.
  • [2] Idriss, I. 2014. An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes, Earthquake Spectra, vol. 30, no. 3, pp. 1155-1177. DOI: 10.1193/070613EQS195M
  • [3] Ambraseys, N. N., Douglas, J., Sarma, S., Smit, P. 2005. Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration, Bulletin of earthquake engineering, vol. 3, no. 1, pp. 1-53. DOI: 10.1007/s10518-005-0186-x
  • [4] Campbell, K. W. 2003. Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America, Bulletin of the Seismological Society of America, vol. 93, no. 3, pp. 1012-1033. DOI: 10.1785/0120040148
  • [5] Guzel, Y. 2019. Influence of input motion selection and soil variability on nonlinear ground response analyses Newcastle University, Newcastle.
  • [6] Sextos, A., et al. 2018. Local site effects and incremental damage of buildings during the 2016 Central Italy Earthquake sequence, Earthquake Spectra, Article vol. 34, no. 4, pp. 1639-1669. DOI: 10.1193/100317EQS194M
  • [7] Gautam, D., Forte, G., Rodrigues, H. 2016. Site effects and associated structural damage analysis in Kathmandu Valley, Nepal, Earthquake and Structures, Article vol. 10, no. 5, pp. 1013-1032. DOI: 10.12989/eas.2016.10.5.1013
  • [8] Guzel, Y., Rouainia, M., Elia, G. 2020. Effect of soil variability on nonlinear site response predictions: Application to the Lotung site, Computers and Geotechnics, vol. 121, Art. no. 103444. DOI: 10.1016/j.compgeo.2020.103444
  • [9] Elia, G. 2015. Site response for seismic hazard assessment, Encyclopedia of earthquake engineering, 2015. DOI: 10.1007/978-3-642-35344-4_241
  • [10] Amorosi, A., Boldini, D., di Lernia, A. 2017. Dynamic soil-structure interaction: A three-dimensional numerical approach and its application to the Lotung case study, Computers and Geotechnics, vol. 90, pp. 34-54. DOI: 10.1016/j.compgeo.2018.02.002
  • [11] Salvati, L. A. Salvati, Pestana, J. M. 2006. Small-strain behavior of granular soils. II: Seismic response analyses and model evaluation, Journal of Geotechnical and Geoenvironmental Engineering, vol. 132, no. 8, pp. 1082-1090. DOI: 10.1061/(ASCE)10900241(2006)132:8(1082)
  • [12] Hallal, M. M., Cox, B. R. 2021. An H/V geostatistical approach for building pseudo-3D Vs models to account for spatial variability in ground response analyses Part I: Model development, Earthquake Spectra, vol. 37, no. 3, pp. 2013-2040. DOI: 10.1177/8755293020981989
  • [13] Seylabi, E., Hallal, M. M., Cox, B. R. 2022. Site characterization at Treasure Island and Delaney Park downhole arrays by heterogeneous data assimilation, Earthquake Spectra, vol. 38, no. 4, pp. 2398-2421. DOI: 10.1177/87552930221094060
  • [14] Tsai, C. C., Chang, W. S., Chiou, J. S. 2017. Enhancing prediction of ground response at the Turkey flat geotechnical array, Bulletin of the Seismological Society of America, vol. 107, no. 5, pp. 2043-2054. DOI:10.1785/0120160324
  • [15] Rubinstein, J. L. 2011. Nonlinear site response in medium magnitude earthquakes near Parkfield, California, Bulletin of the Seismological Society of America, vol. 101, no. 1, pp. 275-286. DOI: 10.1785/0120090396
  • [16] Dikmen, S. U., Edincliler, A., Pinar, A. 2015. Northern Aegean Earthquake (Mw=6.9): Observations at three seismic downhole arrays in Istanbul, Soil Dynamics and Earthquake Engineering, vol. 77, pp. 321-336. DOI: 10.1016/j.soildyn.2015.06.008[17] Kurtuluş, A. 2011. Istanbul geotechnical downhole arrays, Bulletin of Earthquake Engineering, vol. 9, no. 5, pp. 1443-1461. DOI: 10.1007/s10518-011-9268-0
  • [18] Turkish Building Earthquake Code (2018). Turkiye Bina Deprem Yonetmeligi, Deprem Etkisi Altında Binaların Tasarımı icin Esaslar.
  • [19] EC8, 2004. Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for building, 2004.
  • [20] ESRI 2019. ArcGIS, ed. Redlands, CA: Environmental Systems Research Institute.
  • [21] Hashash, Y. M., Musgrove, M., Harmon, J. 2018. Nonlinear and equivalent linear seismic site response of one-dimensional soil columns: User Manual v7. 0, Deepsoil Software. University of Illinois at Urbana-Champaign.
  • [22] Seed, H.B. and Idriss, I.M. 1970. Soil moduli and damping factors for dynamic response analyses. Rep. No. EERC 70/10. Berkeley: Earthquake Engineering Research Center, University of California.
  • [23] Vucetic, M., Dobry, R. 1991. Effect of soil plasticity on cyclic response, Journal of geotechnical engineering, vol. 117, no. 1, pp. 89-107, 1991. DOI: 10.1061/(ASCE)07339410(1991)117:1(89)
  • [24] Kaklamanos, J., Bradley, B. A., Thomspon E. M., Baise, L. G. 2013. Critical Parameters Affecting Bias and Variability in SiteResponse Analyses Using KIK-net Downhole Array Data, Bulletin of the Seismological Society of America, vol. 103, 1733–1749. DOI: 10.1785/0120120166
  • [25] Zalachoris, G., Rathje, E. M. 2015. Evaluation of one-dimensional site response techniques using borehole arrays. Journal of Geotechnical and Geoenvironmental Engineering, vol. 141, no. 12. DOI: 10.1061/(ASCE)GT.1943-5606.0001366

Ataköy Gözlem Kuyusunda Saha Tepki Tahminleri

Year 2023, , 739 - 750, 27.09.2023
https://doi.org/10.21205/deufmd.2023257517

Abstract

Saha davranış analizleri deprem ivme hareketlerini yeniden üretmede ve tahmin etmede kullanılabilecek bir yöntem olduğu benimsenmiştir. Saha analizleri, genellikle, problemi zaman veya frekans bazda çözen eşdeğer doğrusal veya doğrusal olmayan yaklaşımlar benimsenerek gerçekleştirilir. Enstrümanlı geoteknik gözlem kuyuları bu açıdan zemin tabakaları boyunca hareket eden deprem ivme değerlerinin elde edilmesi açısından oldukça önemlidir. Bu veriler nihayetinde saha davranış analizleri için geliştirilen yaklaşımları doğrulamak için kullanılabilir. Bu çalışmada, nispeten yakın zamanda kurulmuş Ataköy geoteknik kuyusunda kaydedilen 24.05.2014 (Ege) depreminin ivme hareketleri değerlendirilmiştir. Ayrıca, kuyuanakaya seviyesinde kaydedilen ivme hareketleri Doğu-Batı ve Kuzey-Güney yönünde simüle edilmiştir. Saha davranış analizleri, frekans bazlı eşdeğer doğrusal yaklaşıma dayalı olarak yürütülmüştür. Tahmin edilen ivme hareketlerinin maksimum yer ivmesi ve spektral ivmeleri, 70 m, 50 m, 25 m ve zemin yüzeyinde kaydedilen değerler ile karşılaştırılmıştır. Sonuçlar, spektral ivme tahminlerinin 50 m derinliğe kadar iyi bir şekilde simüle edildiğini göstermektedir. 25 m'de ve zemin yüzeyinde, tahmin edilen değerler kaydedilen değerlerden her zaman daha büyük olarak elde edilmektedir. Bununla birlikte, tahminler hala Kuzey-Güney yönündeki gerçek değerlere yakın olduğunu göstermektedir. Maksimum yer ivmesi ve birim şekil değiştirme profilleri açısından, tahminler farklı zemin özelliklerine sahip zemin tabakalarını yansıtmaktadır. Eşdeğer doğrusal yaklaşımın, saha davranış analizi için uygun bir yöntem olduğu görünmektedir.

References

  • [1] Kramer, S. L. 1996. Geotechnical earthquake engineering. Pearson Education India.
  • [2] Idriss, I. 2014. An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes, Earthquake Spectra, vol. 30, no. 3, pp. 1155-1177. DOI: 10.1193/070613EQS195M
  • [3] Ambraseys, N. N., Douglas, J., Sarma, S., Smit, P. 2005. Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration, Bulletin of earthquake engineering, vol. 3, no. 1, pp. 1-53. DOI: 10.1007/s10518-005-0186-x
  • [4] Campbell, K. W. 2003. Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America, Bulletin of the Seismological Society of America, vol. 93, no. 3, pp. 1012-1033. DOI: 10.1785/0120040148
  • [5] Guzel, Y. 2019. Influence of input motion selection and soil variability on nonlinear ground response analyses Newcastle University, Newcastle.
  • [6] Sextos, A., et al. 2018. Local site effects and incremental damage of buildings during the 2016 Central Italy Earthquake sequence, Earthquake Spectra, Article vol. 34, no. 4, pp. 1639-1669. DOI: 10.1193/100317EQS194M
  • [7] Gautam, D., Forte, G., Rodrigues, H. 2016. Site effects and associated structural damage analysis in Kathmandu Valley, Nepal, Earthquake and Structures, Article vol. 10, no. 5, pp. 1013-1032. DOI: 10.12989/eas.2016.10.5.1013
  • [8] Guzel, Y., Rouainia, M., Elia, G. 2020. Effect of soil variability on nonlinear site response predictions: Application to the Lotung site, Computers and Geotechnics, vol. 121, Art. no. 103444. DOI: 10.1016/j.compgeo.2020.103444
  • [9] Elia, G. 2015. Site response for seismic hazard assessment, Encyclopedia of earthquake engineering, 2015. DOI: 10.1007/978-3-642-35344-4_241
  • [10] Amorosi, A., Boldini, D., di Lernia, A. 2017. Dynamic soil-structure interaction: A three-dimensional numerical approach and its application to the Lotung case study, Computers and Geotechnics, vol. 90, pp. 34-54. DOI: 10.1016/j.compgeo.2018.02.002
  • [11] Salvati, L. A. Salvati, Pestana, J. M. 2006. Small-strain behavior of granular soils. II: Seismic response analyses and model evaluation, Journal of Geotechnical and Geoenvironmental Engineering, vol. 132, no. 8, pp. 1082-1090. DOI: 10.1061/(ASCE)10900241(2006)132:8(1082)
  • [12] Hallal, M. M., Cox, B. R. 2021. An H/V geostatistical approach for building pseudo-3D Vs models to account for spatial variability in ground response analyses Part I: Model development, Earthquake Spectra, vol. 37, no. 3, pp. 2013-2040. DOI: 10.1177/8755293020981989
  • [13] Seylabi, E., Hallal, M. M., Cox, B. R. 2022. Site characterization at Treasure Island and Delaney Park downhole arrays by heterogeneous data assimilation, Earthquake Spectra, vol. 38, no. 4, pp. 2398-2421. DOI: 10.1177/87552930221094060
  • [14] Tsai, C. C., Chang, W. S., Chiou, J. S. 2017. Enhancing prediction of ground response at the Turkey flat geotechnical array, Bulletin of the Seismological Society of America, vol. 107, no. 5, pp. 2043-2054. DOI:10.1785/0120160324
  • [15] Rubinstein, J. L. 2011. Nonlinear site response in medium magnitude earthquakes near Parkfield, California, Bulletin of the Seismological Society of America, vol. 101, no. 1, pp. 275-286. DOI: 10.1785/0120090396
  • [16] Dikmen, S. U., Edincliler, A., Pinar, A. 2015. Northern Aegean Earthquake (Mw=6.9): Observations at three seismic downhole arrays in Istanbul, Soil Dynamics and Earthquake Engineering, vol. 77, pp. 321-336. DOI: 10.1016/j.soildyn.2015.06.008[17] Kurtuluş, A. 2011. Istanbul geotechnical downhole arrays, Bulletin of Earthquake Engineering, vol. 9, no. 5, pp. 1443-1461. DOI: 10.1007/s10518-011-9268-0
  • [18] Turkish Building Earthquake Code (2018). Turkiye Bina Deprem Yonetmeligi, Deprem Etkisi Altında Binaların Tasarımı icin Esaslar.
  • [19] EC8, 2004. Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for building, 2004.
  • [20] ESRI 2019. ArcGIS, ed. Redlands, CA: Environmental Systems Research Institute.
  • [21] Hashash, Y. M., Musgrove, M., Harmon, J. 2018. Nonlinear and equivalent linear seismic site response of one-dimensional soil columns: User Manual v7. 0, Deepsoil Software. University of Illinois at Urbana-Champaign.
  • [22] Seed, H.B. and Idriss, I.M. 1970. Soil moduli and damping factors for dynamic response analyses. Rep. No. EERC 70/10. Berkeley: Earthquake Engineering Research Center, University of California.
  • [23] Vucetic, M., Dobry, R. 1991. Effect of soil plasticity on cyclic response, Journal of geotechnical engineering, vol. 117, no. 1, pp. 89-107, 1991. DOI: 10.1061/(ASCE)07339410(1991)117:1(89)
  • [24] Kaklamanos, J., Bradley, B. A., Thomspon E. M., Baise, L. G. 2013. Critical Parameters Affecting Bias and Variability in SiteResponse Analyses Using KIK-net Downhole Array Data, Bulletin of the Seismological Society of America, vol. 103, 1733–1749. DOI: 10.1785/0120120166
  • [25] Zalachoris, G., Rathje, E. M. 2015. Evaluation of one-dimensional site response techniques using borehole arrays. Journal of Geotechnical and Geoenvironmental Engineering, vol. 141, no. 12. DOI: 10.1061/(ASCE)GT.1943-5606.0001366
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering, Earthquake Engineering
Journal Section Articles
Authors

Yusuf Guzel 0000-0003-2957-8060

Fidan Güzel 0000-0002-3204-5305

Early Pub Date September 16, 2023
Publication Date September 27, 2023
Published in Issue Year 2023

Cite

APA Guzel, Y., & Güzel, F. (2023). Site Response Predictions at Atakoy Downhole Array. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(75), 739-750. https://doi.org/10.21205/deufmd.2023257517
AMA Guzel Y, Güzel F. Site Response Predictions at Atakoy Downhole Array. DEUFMD. September 2023;25(75):739-750. doi:10.21205/deufmd.2023257517
Chicago Guzel, Yusuf, and Fidan Güzel. “Site Response Predictions at Atakoy Downhole Array”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 75 (September 2023): 739-50. https://doi.org/10.21205/deufmd.2023257517.
EndNote Guzel Y, Güzel F (September 1, 2023) Site Response Predictions at Atakoy Downhole Array. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 75 739–750.
IEEE Y. Guzel and F. Güzel, “Site Response Predictions at Atakoy Downhole Array”, DEUFMD, vol. 25, no. 75, pp. 739–750, 2023, doi: 10.21205/deufmd.2023257517.
ISNAD Guzel, Yusuf - Güzel, Fidan. “Site Response Predictions at Atakoy Downhole Array”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/75 (September 2023), 739-750. https://doi.org/10.21205/deufmd.2023257517.
JAMA Guzel Y, Güzel F. Site Response Predictions at Atakoy Downhole Array. DEUFMD. 2023;25:739–750.
MLA Guzel, Yusuf and Fidan Güzel. “Site Response Predictions at Atakoy Downhole Array”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 75, 2023, pp. 739-50, doi:10.21205/deufmd.2023257517.
Vancouver Guzel Y, Güzel F. Site Response Predictions at Atakoy Downhole Array. DEUFMD. 2023;25(75):739-50.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.