Research Article
BibTex RIS Cite

Experimental Investigation of the Performance and Sustainability Analysis of the Classical Heat Pump Dryer

Year 2023, , 625 - 637, 27.09.2023
https://doi.org/10.21205/deufmd.2023257509

Abstract

Abstract
In this study, the energy and exergy-based performance analysis of the conventional heat pump dryer was evaluated experimentally and examined in terms of sustainability depending on the exergy data. In experimental studies, the drying characteristics of botarga, known as mullet caviar, were determined. In the experiments, bottarga was dried at a constant temperature of 40⁰C until it was reduced from an average moisture content of 50-55% to 16-17% relative to the wet base. The main objectives of the study are to experimentally prove the performance and sustainability of the heat pump dryer and to determine the drying behavior of bottarga, which is a sensitive product. As a result of the experiments, it was observed that the exergy efficiency of the system varied between 67.28% - 78.98%. In addition, according to the results of the food analysis on the dried bottarga, the average moisture and water activity values were detected to be 16.2% and 0.7198, respectively. The results clearly showed that the heat pump dryer is a very efficient system especially in terms of energy and exergy performance, and that bottarga, a sensitive product, can be dried at constant temperature without being damaged.

References

  • [1] Minea V. 2013. Heat-pump-assisted drying: recent technological advances and R&D needs, Dry Technol, Cilt. 31, 1177e89. DOI: 10.1080/07373937-2013-781623.
  • [2] Icier F., Colak N., Erbay Z., Kuzgunkaya E.H., Hepbasli A. 2010. A comparative study on exergetic performance assessment for drying of broccoli florets in three different drying systems, Dry Technol, Cilt. 28, 193e204. DOI: 10.1080/07373930903524017.
  • [3] Daghigh R., Ruslan M.H., Sulaiman M.Y., Sopian K. 2010. Review of solar assisted heat pump drying systems for agricultural and marine products, Renew Sustain Energy Reviews, Cilt. 14, s. 2564-2579. DOI: 10.1016/j.rser.2010-04-004.
  • [4] Erbay Z., Hepbasli A. 2013. Advanced exergy analysis of a heat pump drying system used in food drying, Dry. Technol., Cilt. 31, s. 802-810. DOI: 10.1080/07373937.2012.763044.
  • [5] Singh A., Sarkar J., Sahoo R.R. 2020. Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer, Renewable Energy, Cilt.156, s. 1107-1116. DOI: 10.1016/j.renene.2020-04-100.
  • [6] Singh A., Sarkar J., Sahoo R.R. 2020. Experiment on waste heat recovery‐assisted heat pump drying of food chips: Performance, economic, and exergoeconomic analyses, Journal of Food Processing and Preservation, Cilt.44(9), e14699. DOI: 10.1111/jfpp.14699.
  • [7] Erbay Z., Hepbasli A.,2017. Exergoeconomic evaluation of a ground-source heat pump food dryer at varying dead state temperatures, J. Clean. Prod. , Cilt. 142, s. 1425-1435. DOI: 10.1016/j.jclepro.2016-11-164.
  • [8] Erbay Z., Hepbasli A. 2017. Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method, Energy, Cilt. 127,s. 502-515. DOI: 10.1016/j.energy-2017-03-148.
  • [9] Gungor A., Erbay Z., Hepbasli A. 2012. Exergoeconomic (thermoeconomic) analysis and performance assessment of a gas engine-driven heat pump drying system based on experimental data, Drying Technology, Cilt. 30, s. 52-62. DOI: 10.1080/07373937-2011-618897.
  • [10] Liu M., Wang S., Liu R., Yan J.2018. Energy, exergy and economic analyses on heat pump drying of lignite, Drying Technology, Cilt. 37(13), s. 1-16. DOI: 10.1080/07373937-2018-1531883.
  • [11] Fudholi A., Sopian K., Alghoul M.A., Ruslan M.H., Othman M.Y. 2014. Performance analysis of solar drying system for red chili, Solar Energy, Cilt. 99, s. 47-54. DOI: 10.1016/j.solener.2013-10-019.
  • [12] Natarajan K., Thokchom S.S., Verma T.N., Nashine P. 2017. Convective solar drying of Vitis Vinifera&Momordica charantia using thermal storage materials, Renewable Energy, Cilt. 113, s. 1193-1200. DOI: 10. 1016/j.renene.2017-06-096.
  • [13] Rabha D., Muthukumar P., Somayaji C. 2017. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger, Renewable Energy, Cilt. 105, s. 764-773. DOI: 10.1016/j.renene.2017-01-007.
  • [14] Ndukwu M.C., Bennamoun L., Abam F.I., Eke A.B., Ukoha D. 2017. Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium, Renewable Energy, Cilt. 113, s. 1182-1192. DOI: 10.1016/j.renene.201-06-097.
  • [15] Yu X.L., Zielinska M., Ju H.Y., Mujumdar A.S., Duan X., Gao Z.J., Xiao H.W. 2020. Multistage relative humidity control strategy enhances energy and exergy efficiency of convective drying of carrot cubes, Int J of Heat and Mass Transfer, Cilt. 149, 119231. DOI: 10.1016/j.ijheatmasstransfer.2019.119231.
  • [16] Khanlari A., Sözen A., Şirin C., Tuncer A.D., Gungor A. 2020. Performance enhancement of a greenhouse dryer: Analysis of a cost- effective alternative solar air heater, J of Clean Product, Cilt. 251,119672. DOI: 10.1016/j.jclepro.2019-119672.
  • [17] Gilandeh Y.A., Jahanbakhshi A., Kaveh M. 2020. Prediction kinetic, energy and exergy of quince under hot air dryer using ANNs and ANFIS, Food Science & Nutrition, Cilt. 8(1), s. 594-611. DOI: 10.1002/fsn3-1347.
  • [18] Ekka J.P., Bala K., Muthukumar P., Kanaujiya D.K. 2020. Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates, Renewable Energy, Cilt. 152, s. 55-66. DOI: 10.1016/j.renene.2020-01-035.
  • [19] Singh A., Sarkar J., Sahoo R.R. 2020. Experimentation on solar-assisted heat pump dryer: Thermodynamic, economic and exergoeconomic assessments, Solar Energy, Cilt. 208, s. 150-159. DOI: 10.1016/j.solener.2020-07-081.
  • [20] Ndukwu M.C., Onyenwigwe D., Abam F.I., Eke A.B., Dirioha C. 2020. Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage, Renewable Energy, Cilt. 154, s. 553-568. DOI: 10. 1016/j.renene.2020-03-016.
  • [21] Amjad W., Gilani G.A., Munir A., Asghar F., Ali A., Waseem M. 2020. Energetic and exergetic thermal analysis of an inline-airflow solar hybrid dryer, Applied Thermal Engineering, Cilt. 166, 114632. DOI: 10.1016/j.applthermaleng.2019-114632.
  • [22] Manrique R., Vásquez D., Chejne F., Pinzón A. 2020. Energy analysis of a proposed hybrid solar–biomass coffee bean drying system, Energy, Cilt. 202, 117720. DOI: 10.1016/j.energy.2020-117720.
  • [23] Lamrani B., Draoui A. 2020. Thermal performance and economic analysis of an indirect solar dryer of wood integrated with packed-bed thermal energy storage system: A case study of solar thermal applications, Drying Technology, Cilt. 203, 117791. DOI: 10.1080/07373937-2020-1750025.
  • [24] Atalay H. 2019. Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance, Energy, Cilt. 189, 116180. DOI: 10.1016/j.energy.2019-116180.
  • [25] Scano, P., Rosa, A., Pisano, M. B., Piras, C., & Cosentino, S. 2013. Lipid components and water soluble metabolites in salted and dried tuna (Thunnus thynnus L.) roes, Food chemistry, Cilt. 138(4), s. 2115-2121. DOI: 10.1016/j.foodchem.2012-11-095.
  • [26] Lemmon E.W., Huber M.L., McLinden M.O.2013. NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties, REFPROP, Version 10.0. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
  • [27] Çengel Y., Boles, M. 2019. Thermodynamics An Engineering Approach,5th ed.,McGrawHill, AAA s.
  • [28] Tosun S. 2009. Bazı Tarımsal Ürünler için Isı Pompalı Bir Kurutucunun Geliştirilmesi ve Termodinamik Analizi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 218 s, İzmir.
  • [29] Madamba P.S., Driscoll R.H., Buckle K.A. 1994. Shrinkage, density and porosity of garlic during drying, J. Food Eng., Cilt. 23, s. 309-319. DOI: 10.1016/0260-8774(94)90056-6.
  • [30] Doymaz I. 2009. An experimental study on drying on green apples, Drying Technology, Cilt. 27,s. 478- 485. DOI: 10.1080/07373930802686065.
  • [31] Panchariya P.C. , Popovic D., Sharma A.L. 2002. Thin-layer modeling of black tea drying process, J Food Eng, Cilt. 52, s. 349-357. DOI: 10.1016/S0260-8774(01)00126-1.
  • [32] Akbulut A., Durmuş A.2010. Energy and exergy analysis of thin layer drying of mulberry in a forced solar dryer, Energy, Cilt. 35, s. 1754-1763. DOI: 10.1016/j.energy.2009-12-028.
  • [33] Zare D., Minaei S., Mohamad Z.M., Khoshtaghaza M.H.2006. Computer simulation of rough rice drying in a batch dryer. Energy Convers. Manage. Cilt. 47, s. 3241-3254. DOI: 10.1016/j.enconman.2006.02.021.
  • [34] Rosen M.A., Dincer I., Kanoglu M.2008. Role of exergy in increasing efficiency and sustainability and reducing environmental impact, Energy Policy, Cilt. 36, s. 128-137. DOI: 10. 1016/j.enpol.2007-09-006.
  • [35] Caliskan H., Hepbaşlı A., Dincer I., Maisotsenko V. 2011. Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle, Int J Refrigeration, Cilt. 34, s. 980-990. DOI: 10.1016/j.ijrefrig.2011-02-001.
  • [36] Ndukwu M.C., Abam F.I., Manuwa S.I., Briggs T.A. 2017. Exergetic performance indicators of a direct evaporative cooling system with different evaporative cooling pads, Int J Ambient Energy, Cilt. 38, s.701-709. DOI: 10.1080/01430750-2016-1195774.
  • [37] Ibrahim A., Fudholi A., Sopian K., Othman M.Y., Ruslan M.H. 2014. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system, Energy Conversion and Management, Cilt. 77, s. 527-534. DOI: 10.1016/j.enconman.2013-10-033.
  • [38] Petrov, O.V., Hay, J., Mastikhin, I.V., Balcom, B.J. 2008. Fat and Moisture Content Determination with Unilateral NMR, Food Research International, Cilt. 41(7), s. 758-764. DOI: 10.1016/j.foodres.2008-05-010.
  • [39] Çelik, U., Altınelataman, C., Dinçer, T., Acarlı, D.2012. Comparison of fresh and dried flathead Grey mullet (Mugil cephalus, Linnaeus 1758) caviar by means of proximate composition and quality changes during refrigerated storage at 4 ± 2 °C, Turkish Journal of Fisheries and Aquatic Sciences, Cilt. 12, s. 1–5. DOI: 10.4194/1303-2712-v12-1-01.
  • [40] Caredda, M., Addis, M., Pes, M., Fois, N., Sanna, G., Piredda, G., Sanna, G. 2018. Physico-chemical, colorimetric, rheological parameters and chemometric discrimination of the origin of Mugil cephalus' roes during the manufacturing process of Bottarga, Food Research International, Cilt.108, s.128-135. DOI: 10.1016/j.foodres.2018-03-039

Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi

Year 2023, , 625 - 637, 27.09.2023
https://doi.org/10.21205/deufmd.2023257509

Abstract

Bu çalışmada klasik ısı pompalı kurutucunun deneysel olarak enerji ve ekserji tabanlı performans analizi değerlendirilmiş ve ekserji verilerine bağlı olarak sürdürülebilirlik açısından incelenmiştir. Deneysel çalışmalarda kefal havyarı olarak bilinen botarganın kurutma karakteristiği belirlenmiştir. Yapılan deneylerde botarga 40⁰C sabit sıcaklıkta yaş baza göre ortalama %50-55 nem içeriğinden %16-17 nem içeriğine düşürülünceye kadar kurutulmuştur. Çalışmanın temel amaçlarını ısı pompalı kurutucunun performans ve sürdürülebilirliğini deneysel olarak kanıtlamak ve hassas bir ürün olan botarganın kuruma davranışlarını tespit etmek şeklinde belirtmek mümkündür. Deneyler sonucunda sistemin ekserji verimliliğinin %67.28 - %78.98 aralığında değiştiği gözlemlenmiştir. Buna ek olarak yapılan kurutulmuş botarga üzerinde yapılan gıda analiz sonuçlarına göre ortalama nem ve su aktivesi değerlerinin ise sırasıyla %16.2 ve 0.7198 olduğu belirlenmiştir. Elde edilen sonuçlar ısı pompalı kurutucunun özellikle enerji ve ekserji performansı açısından oldukça verimli bir sistem olduğunu ve hassas bir ürün olan botarganın sabit sıcaklıkta zarar görmeden kurutulabileceğini açıkça ortaya koymuştur.

Thanks

Bu çalışmayı yapmama izin verdikleri için Ege Üniversitesi Makine Mühendisliği Bölümü'ne ve Prof. Dr. Ali GÜNGÖR'e çok teşekkür ederim. Ayrıca kefal havyarı (botarga) bulmam konusunda bana yardımcı olan sevgili arkadaşım Taha TUĞRAL'a da teşekkürü bir borç bilirim.

References

  • [1] Minea V. 2013. Heat-pump-assisted drying: recent technological advances and R&D needs, Dry Technol, Cilt. 31, 1177e89. DOI: 10.1080/07373937-2013-781623.
  • [2] Icier F., Colak N., Erbay Z., Kuzgunkaya E.H., Hepbasli A. 2010. A comparative study on exergetic performance assessment for drying of broccoli florets in three different drying systems, Dry Technol, Cilt. 28, 193e204. DOI: 10.1080/07373930903524017.
  • [3] Daghigh R., Ruslan M.H., Sulaiman M.Y., Sopian K. 2010. Review of solar assisted heat pump drying systems for agricultural and marine products, Renew Sustain Energy Reviews, Cilt. 14, s. 2564-2579. DOI: 10.1016/j.rser.2010-04-004.
  • [4] Erbay Z., Hepbasli A. 2013. Advanced exergy analysis of a heat pump drying system used in food drying, Dry. Technol., Cilt. 31, s. 802-810. DOI: 10.1080/07373937.2012.763044.
  • [5] Singh A., Sarkar J., Sahoo R.R. 2020. Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer, Renewable Energy, Cilt.156, s. 1107-1116. DOI: 10.1016/j.renene.2020-04-100.
  • [6] Singh A., Sarkar J., Sahoo R.R. 2020. Experiment on waste heat recovery‐assisted heat pump drying of food chips: Performance, economic, and exergoeconomic analyses, Journal of Food Processing and Preservation, Cilt.44(9), e14699. DOI: 10.1111/jfpp.14699.
  • [7] Erbay Z., Hepbasli A.,2017. Exergoeconomic evaluation of a ground-source heat pump food dryer at varying dead state temperatures, J. Clean. Prod. , Cilt. 142, s. 1425-1435. DOI: 10.1016/j.jclepro.2016-11-164.
  • [8] Erbay Z., Hepbasli A. 2017. Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method, Energy, Cilt. 127,s. 502-515. DOI: 10.1016/j.energy-2017-03-148.
  • [9] Gungor A., Erbay Z., Hepbasli A. 2012. Exergoeconomic (thermoeconomic) analysis and performance assessment of a gas engine-driven heat pump drying system based on experimental data, Drying Technology, Cilt. 30, s. 52-62. DOI: 10.1080/07373937-2011-618897.
  • [10] Liu M., Wang S., Liu R., Yan J.2018. Energy, exergy and economic analyses on heat pump drying of lignite, Drying Technology, Cilt. 37(13), s. 1-16. DOI: 10.1080/07373937-2018-1531883.
  • [11] Fudholi A., Sopian K., Alghoul M.A., Ruslan M.H., Othman M.Y. 2014. Performance analysis of solar drying system for red chili, Solar Energy, Cilt. 99, s. 47-54. DOI: 10.1016/j.solener.2013-10-019.
  • [12] Natarajan K., Thokchom S.S., Verma T.N., Nashine P. 2017. Convective solar drying of Vitis Vinifera&Momordica charantia using thermal storage materials, Renewable Energy, Cilt. 113, s. 1193-1200. DOI: 10. 1016/j.renene.2017-06-096.
  • [13] Rabha D., Muthukumar P., Somayaji C. 2017. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger, Renewable Energy, Cilt. 105, s. 764-773. DOI: 10.1016/j.renene.2017-01-007.
  • [14] Ndukwu M.C., Bennamoun L., Abam F.I., Eke A.B., Ukoha D. 2017. Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium, Renewable Energy, Cilt. 113, s. 1182-1192. DOI: 10.1016/j.renene.201-06-097.
  • [15] Yu X.L., Zielinska M., Ju H.Y., Mujumdar A.S., Duan X., Gao Z.J., Xiao H.W. 2020. Multistage relative humidity control strategy enhances energy and exergy efficiency of convective drying of carrot cubes, Int J of Heat and Mass Transfer, Cilt. 149, 119231. DOI: 10.1016/j.ijheatmasstransfer.2019.119231.
  • [16] Khanlari A., Sözen A., Şirin C., Tuncer A.D., Gungor A. 2020. Performance enhancement of a greenhouse dryer: Analysis of a cost- effective alternative solar air heater, J of Clean Product, Cilt. 251,119672. DOI: 10.1016/j.jclepro.2019-119672.
  • [17] Gilandeh Y.A., Jahanbakhshi A., Kaveh M. 2020. Prediction kinetic, energy and exergy of quince under hot air dryer using ANNs and ANFIS, Food Science & Nutrition, Cilt. 8(1), s. 594-611. DOI: 10.1002/fsn3-1347.
  • [18] Ekka J.P., Bala K., Muthukumar P., Kanaujiya D.K. 2020. Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates, Renewable Energy, Cilt. 152, s. 55-66. DOI: 10.1016/j.renene.2020-01-035.
  • [19] Singh A., Sarkar J., Sahoo R.R. 2020. Experimentation on solar-assisted heat pump dryer: Thermodynamic, economic and exergoeconomic assessments, Solar Energy, Cilt. 208, s. 150-159. DOI: 10.1016/j.solener.2020-07-081.
  • [20] Ndukwu M.C., Onyenwigwe D., Abam F.I., Eke A.B., Dirioha C. 2020. Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage, Renewable Energy, Cilt. 154, s. 553-568. DOI: 10. 1016/j.renene.2020-03-016.
  • [21] Amjad W., Gilani G.A., Munir A., Asghar F., Ali A., Waseem M. 2020. Energetic and exergetic thermal analysis of an inline-airflow solar hybrid dryer, Applied Thermal Engineering, Cilt. 166, 114632. DOI: 10.1016/j.applthermaleng.2019-114632.
  • [22] Manrique R., Vásquez D., Chejne F., Pinzón A. 2020. Energy analysis of a proposed hybrid solar–biomass coffee bean drying system, Energy, Cilt. 202, 117720. DOI: 10.1016/j.energy.2020-117720.
  • [23] Lamrani B., Draoui A. 2020. Thermal performance and economic analysis of an indirect solar dryer of wood integrated with packed-bed thermal energy storage system: A case study of solar thermal applications, Drying Technology, Cilt. 203, 117791. DOI: 10.1080/07373937-2020-1750025.
  • [24] Atalay H. 2019. Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance, Energy, Cilt. 189, 116180. DOI: 10.1016/j.energy.2019-116180.
  • [25] Scano, P., Rosa, A., Pisano, M. B., Piras, C., & Cosentino, S. 2013. Lipid components and water soluble metabolites in salted and dried tuna (Thunnus thynnus L.) roes, Food chemistry, Cilt. 138(4), s. 2115-2121. DOI: 10.1016/j.foodchem.2012-11-095.
  • [26] Lemmon E.W., Huber M.L., McLinden M.O.2013. NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties, REFPROP, Version 10.0. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
  • [27] Çengel Y., Boles, M. 2019. Thermodynamics An Engineering Approach,5th ed.,McGrawHill, AAA s.
  • [28] Tosun S. 2009. Bazı Tarımsal Ürünler için Isı Pompalı Bir Kurutucunun Geliştirilmesi ve Termodinamik Analizi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 218 s, İzmir.
  • [29] Madamba P.S., Driscoll R.H., Buckle K.A. 1994. Shrinkage, density and porosity of garlic during drying, J. Food Eng., Cilt. 23, s. 309-319. DOI: 10.1016/0260-8774(94)90056-6.
  • [30] Doymaz I. 2009. An experimental study on drying on green apples, Drying Technology, Cilt. 27,s. 478- 485. DOI: 10.1080/07373930802686065.
  • [31] Panchariya P.C. , Popovic D., Sharma A.L. 2002. Thin-layer modeling of black tea drying process, J Food Eng, Cilt. 52, s. 349-357. DOI: 10.1016/S0260-8774(01)00126-1.
  • [32] Akbulut A., Durmuş A.2010. Energy and exergy analysis of thin layer drying of mulberry in a forced solar dryer, Energy, Cilt. 35, s. 1754-1763. DOI: 10.1016/j.energy.2009-12-028.
  • [33] Zare D., Minaei S., Mohamad Z.M., Khoshtaghaza M.H.2006. Computer simulation of rough rice drying in a batch dryer. Energy Convers. Manage. Cilt. 47, s. 3241-3254. DOI: 10.1016/j.enconman.2006.02.021.
  • [34] Rosen M.A., Dincer I., Kanoglu M.2008. Role of exergy in increasing efficiency and sustainability and reducing environmental impact, Energy Policy, Cilt. 36, s. 128-137. DOI: 10. 1016/j.enpol.2007-09-006.
  • [35] Caliskan H., Hepbaşlı A., Dincer I., Maisotsenko V. 2011. Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle, Int J Refrigeration, Cilt. 34, s. 980-990. DOI: 10.1016/j.ijrefrig.2011-02-001.
  • [36] Ndukwu M.C., Abam F.I., Manuwa S.I., Briggs T.A. 2017. Exergetic performance indicators of a direct evaporative cooling system with different evaporative cooling pads, Int J Ambient Energy, Cilt. 38, s.701-709. DOI: 10.1080/01430750-2016-1195774.
  • [37] Ibrahim A., Fudholi A., Sopian K., Othman M.Y., Ruslan M.H. 2014. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system, Energy Conversion and Management, Cilt. 77, s. 527-534. DOI: 10.1016/j.enconman.2013-10-033.
  • [38] Petrov, O.V., Hay, J., Mastikhin, I.V., Balcom, B.J. 2008. Fat and Moisture Content Determination with Unilateral NMR, Food Research International, Cilt. 41(7), s. 758-764. DOI: 10.1016/j.foodres.2008-05-010.
  • [39] Çelik, U., Altınelataman, C., Dinçer, T., Acarlı, D.2012. Comparison of fresh and dried flathead Grey mullet (Mugil cephalus, Linnaeus 1758) caviar by means of proximate composition and quality changes during refrigerated storage at 4 ± 2 °C, Turkish Journal of Fisheries and Aquatic Sciences, Cilt. 12, s. 1–5. DOI: 10.4194/1303-2712-v12-1-01.
  • [40] Caredda, M., Addis, M., Pes, M., Fois, N., Sanna, G., Piredda, G., Sanna, G. 2018. Physico-chemical, colorimetric, rheological parameters and chemometric discrimination of the origin of Mugil cephalus' roes during the manufacturing process of Bottarga, Food Research International, Cilt.108, s.128-135. DOI: 10.1016/j.foodres.2018-03-039
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Articles
Authors

Halil Atalay 0000-0002-4549-584X

Early Pub Date September 16, 2023
Publication Date September 27, 2023
Published in Issue Year 2023

Cite

APA Atalay, H. (2023). Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(75), 625-637. https://doi.org/10.21205/deufmd.2023257509
AMA Atalay H. Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi. DEUFMD. September 2023;25(75):625-637. doi:10.21205/deufmd.2023257509
Chicago Atalay, Halil. “Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 75 (September 2023): 625-37. https://doi.org/10.21205/deufmd.2023257509.
EndNote Atalay H (September 1, 2023) Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 75 625–637.
IEEE H. Atalay, “Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi”, DEUFMD, vol. 25, no. 75, pp. 625–637, 2023, doi: 10.21205/deufmd.2023257509.
ISNAD Atalay, Halil. “Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/75 (September 2023), 625-637. https://doi.org/10.21205/deufmd.2023257509.
JAMA Atalay H. Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi. DEUFMD. 2023;25:625–637.
MLA Atalay, Halil. “Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 75, 2023, pp. 625-37, doi:10.21205/deufmd.2023257509.
Vancouver Atalay H. Klasik Isı Pompali Kurutucunun Performans Ve Sürdürülebilirlik Analizinin Deneysel Olarak İncelenmesi. DEUFMD. 2023;25(75):625-37.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.