Research Article
BibTex RIS Cite

Controlling the Motion of Interfaces in Capillary Channels with Non-uniform Surface Wettability

Year 2023, , 675 - 691, 27.09.2023
https://doi.org/10.21205/deufmd.2023257513

Abstract

The use of self-driven flows in microfluidic devices attracts many researchers as the external flow-driving mechanism is diminished or eliminated. One of the mechanisms providing such motions is generating a pressure difference across interfaces as in the case of the motion in capillary tubes. The capillarity, namely, the pressure difference across the interface due to its curvature drives the motion. This pressure depends on the interaction with the capillary walls and is controlled if one varies the surface energy of the walls. In this study, we search for the effects of surface energy on the motion of interfaces in capillary-driven flow. To this end, we model the motion of fluid particles in a capillary channel and integrate the governing equations using the binary lattice Boltzmann method for the two-phase flow. We, first, validate our solver for canonical static and dynamic problems. We, then, discuss two main contributions; we show how to deviate the interface speed from the ones moving in channels with uniform wall energies and discuss the conditions under which such an interface stagnates (like a passive valve in a channel). Tuning the wettability of the channel walls, we provide a simple condition for stopping the interface: the summation of the equilibrium contact angles interface make with the channel walls at the bottom and top wall need to satisfy $\theta_{eq}^{top}+\theta_{eq}^{bot} \geq \pi$. Configurations and wetting properties of different wettability regions play major roles together

References

  • [1] Darmanin, T. and Guittard, F., 2015. ‘Superhydrophobic and superoleophobic properties in nature’, Materials Today 18(5), 273–285. DOI: 10.1016/j.mattod.2015.01.001
  • [2] Kohonen, M. M., 2006. ‘Engineered wettability in tree capillaries’, Langmuir 22, 3148–3153. DOI: 10.1021/la052861x
  • [3] Barthlott, W., Neinhuis, C. 1997. ‘Purity of the sacred lotus, or escape from contamination in biological surfaces’, Planta 202, 1–8. DOI: 10.1007/s004250050096
  • [4] Parker, A. R. and Lawrance, C. R., 2001. ‘Water capture by a desert beetle’, Nature 414, 33–34. DOI: 10.1038/35102108
  • [5] Zheng, Y., Gao, X. and Jiang, L. 2007. ‘Directional adhesion of superhydrophobic butterfly wings’, Soft Matter 3, 178–182. DOI: 10.1039/B612667G
  • [6] Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R., Weigl, B.H. 2006. ‘Microfluidic diagnostic technologies for global public health’, Nature 442, 412–418. DOI: 10.1038/nature05064
  • [7] Sackmann, E.K., Fulton, A.L. and Beebe, D.J., 2014. ‘The present and future role of microfluidics in biomedical research’, Nature 507, 181–189. DOI: 10.1038/nature13118
  • [8] Yeo, L.Y., Chang, H.C., Chan, P.P.Y., and Friend, J.R. 2011. ‘Microfluidic devices for bioapplications’, Small 7(1), 12–48. DOI: 10.1002/smll.201000946
  • [9] Sonmez, I. and Cebeci, Y., 2004. ‘Investigation of relationship between critical surface tension of wetting and oil agglomeration recovery of barite’, Colloids and Surfaces A: Physicochem. Eng. Aspects 234, 27–33. DOI: 10.1016/j.colsurfa.2003.12.003
  • [10] Dupuis, A. and Yeomans, J.M., 2004. Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces. Future Generation Computer Systems, 20(6), pp.993-1001. DOI: 10.1016/j.future.2003.12.012
  • [11] Leopoldes, J., Dupuis, A., Bucknall, D.G. and Yeomans, J.M., 2003. ‘Jetting micronscale droplets onto chemically heterogeneous surfaces’, Langmuir 19, 9818–9822. DOI: 10.1021/la0353069
  • [12] Verberg, R., Pooley, C.M., Yeomans, J.M. and Balazs, A.C., 2004. ‘Pattern formation in binary fluids confined between rough, chemically heterogeneous surfaces’, Physical Review Letters 93(18). DOI: 10.1103/PhysRevLett.93.184501
  • [13] Au, A.K., Lai, H., Utela, B.R. and Folch, A., 2011. ‘Microvalves and micropumps for biomems’, Micromachines 2(2), 179–220. DOI: 10.3390/mi2020179
  • [14] Hilber, W., 2016. ‘Stimulus-active polymer actuators for next-generation microfluidic devices’, Applied Physics A 122(751). DOI: 10.1007/s00339-016-0258-6
  • [15] Arango, Y., Temiz, Y., Gökçe, O. and Delamarche, E., 2020. ‘Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics’, Science Advances 6(16). DOI: 10.1126/sciadv.aay8305
  • [16] Mahmud, M. S., Alo, A., Farshchian, B., Lee, G.-H. and Kim, N., 2022. ‘Pulsed laser ablation on polymethylmethacrylate (pmma) surfaces for capillary driven flows’, Surfaces and Interfaces 31, 101989. DOI: 10.1016/j.surfin.2022.101989
  • [17] Marmur, A., 1994a. ‘Contact angle hysteresis on heterogeneous smooth surfaces’, J. Colloid Interface Sci. 168(1), 40–46. DOI: 10.1006/jcis.1994.1391
  • [18] Marmur, A., 1994b. ‘Thermodynamic aspects of contact angle hysteresis’, Advances in Colloid and Interface Science 50, 121–141. DOI: 10.1016/0001-8686(94)80028-6
  • [19] Joanny, J.F. and De Gennes, P.G., 1984. ‘A model for contact angle hysteresis’, J. Chem. Phys. 81(552). DOI: 10.1063/1.447337
  • [20] Adamson, A. W. and Gast, A. P., 1997. ‘Physical chemistry of surfaces’, A Wiley-Interscience Publication 6th Edition.
  • [21] Sonmez, I. and Cebeci, Y., 2019. ‘Contact angle hysteresis in a microchannel: Statics’, Physical Review Fluids 4(044008). DOI: 10.1016/j.colsurfa.2003.12.003
  • [22] Kusumaatmaja, H. and Yeomans, J.M., 2007. ‘Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces’, Langmuir 23(11), 6019–6032. DOI: 10.1021/la063218t
  • [23] Montes Ruiz-Cabello, F.J., Rodríguez-Valverde, M.A., Marmur, A. and Cabrerizo-Vílchez, M.A., 2011. ‘Comparison of sessile drop and captive bubble methods on rough homogeneous surfaces: A numerical study’, Langmuir 27(15), 9638–9643. DOI: 10.1021/la201248z
  • [24] Chang, X., Huang, H., Lu, X.Y. and Hou, J., 2022. ‘Width effect on contact angle hysteresis in a patterned heterogeneous microchannel’, J. Fluid Mech. 949(A15). DOI: 10.1017/jfm.2022.763
  • [25] Wang, X., Xu, B. and Chen, Z., 2020. ‘Numerical simulation of droplet dynamics on chemically heterogeneous surfaces by lattice boltzmann method’, International Journal of Numerical Methods for Heat and Fluid Flow 30(2), 607–624. DOI: 10.1108/HFF-03-2019-0259
  • [26] Iwahara, D., Shinto, H., Miyahara, M. and Higashitani, K., 2003. ‘Liquid drops on homogeneous and chemically heterogeneous surfaces: A two dimensional lattice boltzmann study’, Langmuir 19, 9086–9093. DOI: 10.1021/la034456g
  • [27] Tilehboni, S.M., Fattahi, E., Afrouzi, H.H. and Farhadi, M., 2015. ‘Numerical simulation of droplet detachment from solid walls under gravity force using lattice boltzmann method’, Journal of Molecular Liquids 212, 544–556. DOI: 10.1016/j.molliq.2015.10.007
  • [28] Park, C.S., Baek, S.Y., Lee, K.J. and Kim, S.W., 2003. ‘Two-phase flow in a gas-injected capillary tube’, Advances in Polymer Technology 22(4), 320–328. DOI: 10.1002/adv.10059
  • [29] Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. and Rivet, J.P., 2019. Lattice gas hydrodynamics in two and three dimensions. In Lattice Gas Methods for Partial Differential Equations. CRC Press, pp. 77-136.
  • [30] Dutka, F., Napiórkowski, M. and Dietrich, S., 2012. ‘Mesoscopic analysis of gibbs’ criterion for sessile nanodroplets on trapezoidal substrates’, The Journal of Chemical Physics 136(064702). DOI: 10.1063/1.3682775
  • [31] Kusumaatmaja, H., Pooley, C.M., Girardo, S., Pisignano, D. and Yeomans, J.M., 2008. ‘Capillary filling in patterned channels’, Physical Review E 77(067301). DOI: 10.1103/PhysRevE.77.067301
  • [32] Zhao, J., Chen, S. and Liu, Y., 2016. ‘Droplets motion on chemically/topographically heterogeneous surfaces’, Molecular Simulation 42, 1452–1459. DOI: 10.1080/08927022.2016.1198478
  • [33] Kusumaatmaja, H., 2008. ‘Lattice boltzmann studies of wetting and spreading on patterned surfaces’, University of Oxford D. Phil. Thesis.
  • [34] Zhang, J., Li, B. and Kwok, D.Y., 2009. ‘Metastable contact angles and selfpropelled drop movement on chemically, heterogeneous surfaces by a meanfield lattice boltzmann model’, Eur. Phys. J. Special Topics 171, 73–79. DOI: 10.1140/epjst/e2009-01013-y
  • [35] Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. and Viggen, E.M., 2017a. The lattice Boltzmann method. Springer International Publishing, 10(978-3), pp.407-431.
  • [36] Kendon, V.M., Cates, M.E., Pagonabarraga, I., Desplat, J.C. and Bladon, P., 2001. ‘Inertial effects in three dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice boltzmann study’, J. Fluid Mech 440, 147–203. DOI: 10.1017/S0022112001004682
  • [37] Bray, A.J., 1994. ‘Theory of phase-ordering kinetics’, Advances in Physics 43(3), 357–459. DOI: 10.1080/00018739400101505
  • [38] Swift, M.R., Orlandini, E., Osborn, W.R. and Yeomans, J.M., 1996. ‘Lattice boltzmann simulations of liquid-gas and binary fluid systems’, Physical Review E. 54(5), 5041–5052. DOI: 10.1103/physreve.54.5041
  • [39] Briant, A.J. and Yeomans, J.M., 2004. ‘Lattice boltzmann simulations of contact line motion. ii. binary fluids’, Physical Review E 69(031603). DOI: 10.1103/PhysRevE.69.031603
  • [40] Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. and Viggen, E.M., 2017b. The lattice Boltzmann method. Springer International Publishing, 10(978-3), pp.65-66. [41] Bhatnagar, P.L., Gross, E.P. and Krook, M., 1954. ‘A model for collision processes in gases. i. small amplitude processes in charged and neutral one component systems’, Physical Review 94(3), 511–525. DOI: 10.1103/physrev.94.511
  • [42] Pooley, C.M., Kusumaatmaja, H. and Yeomans, J.M., 2008. ‘Contact line dynamics in binary lattice boltzmann simulations’, Physical Review E 78(056709). DOI: 10.1103/PhysRevE.78.056709
  • [43] Pooley, C.M., Kusumaatmaja, H. and Yeomans, J.M., 2009. ‘Modelling capillary filling dynamics using lattice boltzmann simulations’, Eur. Phys. J. Special Topics 171, 63–71. DOI: 10.1140/epjst/e2009-01012-0
  • [44] Ladd, A., 1994. ‘Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. theoretical foundation’, Journal of Fluid Mechanics 271, 285. DOI: 10.1017/s0022112094001771
  • [45] Schrader, M., 1995. ‘Young-dupre revisited’, Langmuir 11, 3585–3589. DOI: 10.1021/la00009a049
  • [46] Washburn, E. W., 1921. ‘The dynamics of capillary flow’, The Physical Review 17(3), 273. DOI: 10.1103/PhysRev.17.273
  • [47] Cox, R., 1986. ‘The dynamics of the spreading of liquids on a solid surface. part 1. viscous flow.’, Journal of Fluid Mechanics 168(1), 169–194. DOI: 10.1017/s0022112086000332
  • [48] Voinov, O., 1977. ‘Hydrodynamics of wetting’, Fluid Dynamics 11(5), 714-721. DOI: 10.1007/bf01012963
  • [49] Latva-Kokko, M. and Rothman, D. H., 2007. ‘Scaling of dynamic contact angles in a lattice-boltzmann model’, Physical Review Letters 98(254503). DOI: 10.1103/PhysRevLett.98.254503
  • [50] Teng, P., Tian, D., Fu, H. and Wang, S., 2020. ‘Recent progress of electrowetting for droplet manipulation: from wetting to superwetting systems’, Mater. Chem. Front. 4(140). DOI: 10.1039/c9qm00458k
  • [51] Olanrewaju, A., Beaugrand, M., Yafia, M. and Juncker, D., 2018. ‘Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits’, Lab. Chip. 18(16), 2323–2347. DOI: 10.1039/c8lc00458g
  • [52] Mugele, F., Klingner, A., Buehrle, J., Steinhauser, D. and Herminghaus, S., 2005. ‘Electrowetting: a convenient way to switchable wettability patterns’, J. Phys.: Condens. Matter 17, 559–576. DOI: 10.1088/0953-8984/17/9/016

Yüzey Islanabilirliği Üniform Olmayan Kılcal Kanallardaki Arayüzeylerin Hareketinin Kontrolü

Year 2023, , 675 - 691, 27.09.2023
https://doi.org/10.21205/deufmd.2023257513

Abstract

Mikroakışkan cihazlarda kendinden tahrikli akışların kullanımı, harici akış tahrik mekanizması azaltıldığı veya ortadan kaldırıldığı için birçok araştırmacının ilgisini çekmektedir. Bu tür hareketleri sağlayan mekanizmalardan biri de kılcal borulardaki harekette olduğu gibi arayüzeyler arasında bir basınç farkı oluşturmaktır. Kılcallık, yani giriş boyunca eğriliği nedeniyle oluşan basınç farkı, hareketi yönlendirir. Bu basınç kılcal duvarlarla etkileşime bağlıdır ve duvarların yüzey enerjisi değiştirilerek kontrol edilir. Bu çalışmada, yüzey enerjisinin kılcal tahrikli akıştaki arayüzlerin hareketi üzerindeki etkilerini araştırıyoruz. Bu amaçla, bir kılcal kanaldaki sıvı parçacıklarının hareketini modelliyoruz ve iki fazlı akış için ikili Lattice Boltzmann yöntemini kullanıyoruz. Öncelikle standart statik ve dinamik problemler için çözücümüzü doğruluyoruz. O halde iki ana katkıyı tartışıyoruz; arayüz hızının, tekdüze duvar enerjilerine sahip kanallarda hareket edenlerden nasıl saptırılacağını gösteriyoruz ve böyle bir arayüzün durduğu koşulları (bir kanaldaki pasif valf gibi) tartışıyoruz. Kanal duvarlarının ıslanabilirliğini ayarlayarak arayüzü durdurmak için basit bir koşul sağlıyoruz: arayüzün alt ve üst duvardaki kanal duvarlarıyla yaptığı denge temas açılarının toplamı $\theta_{eq}^{üst}+\theta_{eq}^{alt} \geq \pi$'yi karşılamalıdır. Farklı ıslanabilirlik bölgelerinin konfigürasyonları ve ıslanma özellikleri birlikte önemli rol oynar.

References

  • [1] Darmanin, T. and Guittard, F., 2015. ‘Superhydrophobic and superoleophobic properties in nature’, Materials Today 18(5), 273–285. DOI: 10.1016/j.mattod.2015.01.001
  • [2] Kohonen, M. M., 2006. ‘Engineered wettability in tree capillaries’, Langmuir 22, 3148–3153. DOI: 10.1021/la052861x
  • [3] Barthlott, W., Neinhuis, C. 1997. ‘Purity of the sacred lotus, or escape from contamination in biological surfaces’, Planta 202, 1–8. DOI: 10.1007/s004250050096
  • [4] Parker, A. R. and Lawrance, C. R., 2001. ‘Water capture by a desert beetle’, Nature 414, 33–34. DOI: 10.1038/35102108
  • [5] Zheng, Y., Gao, X. and Jiang, L. 2007. ‘Directional adhesion of superhydrophobic butterfly wings’, Soft Matter 3, 178–182. DOI: 10.1039/B612667G
  • [6] Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R., Weigl, B.H. 2006. ‘Microfluidic diagnostic technologies for global public health’, Nature 442, 412–418. DOI: 10.1038/nature05064
  • [7] Sackmann, E.K., Fulton, A.L. and Beebe, D.J., 2014. ‘The present and future role of microfluidics in biomedical research’, Nature 507, 181–189. DOI: 10.1038/nature13118
  • [8] Yeo, L.Y., Chang, H.C., Chan, P.P.Y., and Friend, J.R. 2011. ‘Microfluidic devices for bioapplications’, Small 7(1), 12–48. DOI: 10.1002/smll.201000946
  • [9] Sonmez, I. and Cebeci, Y., 2004. ‘Investigation of relationship between critical surface tension of wetting and oil agglomeration recovery of barite’, Colloids and Surfaces A: Physicochem. Eng. Aspects 234, 27–33. DOI: 10.1016/j.colsurfa.2003.12.003
  • [10] Dupuis, A. and Yeomans, J.M., 2004. Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces. Future Generation Computer Systems, 20(6), pp.993-1001. DOI: 10.1016/j.future.2003.12.012
  • [11] Leopoldes, J., Dupuis, A., Bucknall, D.G. and Yeomans, J.M., 2003. ‘Jetting micronscale droplets onto chemically heterogeneous surfaces’, Langmuir 19, 9818–9822. DOI: 10.1021/la0353069
  • [12] Verberg, R., Pooley, C.M., Yeomans, J.M. and Balazs, A.C., 2004. ‘Pattern formation in binary fluids confined between rough, chemically heterogeneous surfaces’, Physical Review Letters 93(18). DOI: 10.1103/PhysRevLett.93.184501
  • [13] Au, A.K., Lai, H., Utela, B.R. and Folch, A., 2011. ‘Microvalves and micropumps for biomems’, Micromachines 2(2), 179–220. DOI: 10.3390/mi2020179
  • [14] Hilber, W., 2016. ‘Stimulus-active polymer actuators for next-generation microfluidic devices’, Applied Physics A 122(751). DOI: 10.1007/s00339-016-0258-6
  • [15] Arango, Y., Temiz, Y., Gökçe, O. and Delamarche, E., 2020. ‘Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics’, Science Advances 6(16). DOI: 10.1126/sciadv.aay8305
  • [16] Mahmud, M. S., Alo, A., Farshchian, B., Lee, G.-H. and Kim, N., 2022. ‘Pulsed laser ablation on polymethylmethacrylate (pmma) surfaces for capillary driven flows’, Surfaces and Interfaces 31, 101989. DOI: 10.1016/j.surfin.2022.101989
  • [17] Marmur, A., 1994a. ‘Contact angle hysteresis on heterogeneous smooth surfaces’, J. Colloid Interface Sci. 168(1), 40–46. DOI: 10.1006/jcis.1994.1391
  • [18] Marmur, A., 1994b. ‘Thermodynamic aspects of contact angle hysteresis’, Advances in Colloid and Interface Science 50, 121–141. DOI: 10.1016/0001-8686(94)80028-6
  • [19] Joanny, J.F. and De Gennes, P.G., 1984. ‘A model for contact angle hysteresis’, J. Chem. Phys. 81(552). DOI: 10.1063/1.447337
  • [20] Adamson, A. W. and Gast, A. P., 1997. ‘Physical chemistry of surfaces’, A Wiley-Interscience Publication 6th Edition.
  • [21] Sonmez, I. and Cebeci, Y., 2019. ‘Contact angle hysteresis in a microchannel: Statics’, Physical Review Fluids 4(044008). DOI: 10.1016/j.colsurfa.2003.12.003
  • [22] Kusumaatmaja, H. and Yeomans, J.M., 2007. ‘Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces’, Langmuir 23(11), 6019–6032. DOI: 10.1021/la063218t
  • [23] Montes Ruiz-Cabello, F.J., Rodríguez-Valverde, M.A., Marmur, A. and Cabrerizo-Vílchez, M.A., 2011. ‘Comparison of sessile drop and captive bubble methods on rough homogeneous surfaces: A numerical study’, Langmuir 27(15), 9638–9643. DOI: 10.1021/la201248z
  • [24] Chang, X., Huang, H., Lu, X.Y. and Hou, J., 2022. ‘Width effect on contact angle hysteresis in a patterned heterogeneous microchannel’, J. Fluid Mech. 949(A15). DOI: 10.1017/jfm.2022.763
  • [25] Wang, X., Xu, B. and Chen, Z., 2020. ‘Numerical simulation of droplet dynamics on chemically heterogeneous surfaces by lattice boltzmann method’, International Journal of Numerical Methods for Heat and Fluid Flow 30(2), 607–624. DOI: 10.1108/HFF-03-2019-0259
  • [26] Iwahara, D., Shinto, H., Miyahara, M. and Higashitani, K., 2003. ‘Liquid drops on homogeneous and chemically heterogeneous surfaces: A two dimensional lattice boltzmann study’, Langmuir 19, 9086–9093. DOI: 10.1021/la034456g
  • [27] Tilehboni, S.M., Fattahi, E., Afrouzi, H.H. and Farhadi, M., 2015. ‘Numerical simulation of droplet detachment from solid walls under gravity force using lattice boltzmann method’, Journal of Molecular Liquids 212, 544–556. DOI: 10.1016/j.molliq.2015.10.007
  • [28] Park, C.S., Baek, S.Y., Lee, K.J. and Kim, S.W., 2003. ‘Two-phase flow in a gas-injected capillary tube’, Advances in Polymer Technology 22(4), 320–328. DOI: 10.1002/adv.10059
  • [29] Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. and Rivet, J.P., 2019. Lattice gas hydrodynamics in two and three dimensions. In Lattice Gas Methods for Partial Differential Equations. CRC Press, pp. 77-136.
  • [30] Dutka, F., Napiórkowski, M. and Dietrich, S., 2012. ‘Mesoscopic analysis of gibbs’ criterion for sessile nanodroplets on trapezoidal substrates’, The Journal of Chemical Physics 136(064702). DOI: 10.1063/1.3682775
  • [31] Kusumaatmaja, H., Pooley, C.M., Girardo, S., Pisignano, D. and Yeomans, J.M., 2008. ‘Capillary filling in patterned channels’, Physical Review E 77(067301). DOI: 10.1103/PhysRevE.77.067301
  • [32] Zhao, J., Chen, S. and Liu, Y., 2016. ‘Droplets motion on chemically/topographically heterogeneous surfaces’, Molecular Simulation 42, 1452–1459. DOI: 10.1080/08927022.2016.1198478
  • [33] Kusumaatmaja, H., 2008. ‘Lattice boltzmann studies of wetting and spreading on patterned surfaces’, University of Oxford D. Phil. Thesis.
  • [34] Zhang, J., Li, B. and Kwok, D.Y., 2009. ‘Metastable contact angles and selfpropelled drop movement on chemically, heterogeneous surfaces by a meanfield lattice boltzmann model’, Eur. Phys. J. Special Topics 171, 73–79. DOI: 10.1140/epjst/e2009-01013-y
  • [35] Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. and Viggen, E.M., 2017a. The lattice Boltzmann method. Springer International Publishing, 10(978-3), pp.407-431.
  • [36] Kendon, V.M., Cates, M.E., Pagonabarraga, I., Desplat, J.C. and Bladon, P., 2001. ‘Inertial effects in three dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice boltzmann study’, J. Fluid Mech 440, 147–203. DOI: 10.1017/S0022112001004682
  • [37] Bray, A.J., 1994. ‘Theory of phase-ordering kinetics’, Advances in Physics 43(3), 357–459. DOI: 10.1080/00018739400101505
  • [38] Swift, M.R., Orlandini, E., Osborn, W.R. and Yeomans, J.M., 1996. ‘Lattice boltzmann simulations of liquid-gas and binary fluid systems’, Physical Review E. 54(5), 5041–5052. DOI: 10.1103/physreve.54.5041
  • [39] Briant, A.J. and Yeomans, J.M., 2004. ‘Lattice boltzmann simulations of contact line motion. ii. binary fluids’, Physical Review E 69(031603). DOI: 10.1103/PhysRevE.69.031603
  • [40] Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. and Viggen, E.M., 2017b. The lattice Boltzmann method. Springer International Publishing, 10(978-3), pp.65-66. [41] Bhatnagar, P.L., Gross, E.P. and Krook, M., 1954. ‘A model for collision processes in gases. i. small amplitude processes in charged and neutral one component systems’, Physical Review 94(3), 511–525. DOI: 10.1103/physrev.94.511
  • [42] Pooley, C.M., Kusumaatmaja, H. and Yeomans, J.M., 2008. ‘Contact line dynamics in binary lattice boltzmann simulations’, Physical Review E 78(056709). DOI: 10.1103/PhysRevE.78.056709
  • [43] Pooley, C.M., Kusumaatmaja, H. and Yeomans, J.M., 2009. ‘Modelling capillary filling dynamics using lattice boltzmann simulations’, Eur. Phys. J. Special Topics 171, 63–71. DOI: 10.1140/epjst/e2009-01012-0
  • [44] Ladd, A., 1994. ‘Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. theoretical foundation’, Journal of Fluid Mechanics 271, 285. DOI: 10.1017/s0022112094001771
  • [45] Schrader, M., 1995. ‘Young-dupre revisited’, Langmuir 11, 3585–3589. DOI: 10.1021/la00009a049
  • [46] Washburn, E. W., 1921. ‘The dynamics of capillary flow’, The Physical Review 17(3), 273. DOI: 10.1103/PhysRev.17.273
  • [47] Cox, R., 1986. ‘The dynamics of the spreading of liquids on a solid surface. part 1. viscous flow.’, Journal of Fluid Mechanics 168(1), 169–194. DOI: 10.1017/s0022112086000332
  • [48] Voinov, O., 1977. ‘Hydrodynamics of wetting’, Fluid Dynamics 11(5), 714-721. DOI: 10.1007/bf01012963
  • [49] Latva-Kokko, M. and Rothman, D. H., 2007. ‘Scaling of dynamic contact angles in a lattice-boltzmann model’, Physical Review Letters 98(254503). DOI: 10.1103/PhysRevLett.98.254503
  • [50] Teng, P., Tian, D., Fu, H. and Wang, S., 2020. ‘Recent progress of electrowetting for droplet manipulation: from wetting to superwetting systems’, Mater. Chem. Front. 4(140). DOI: 10.1039/c9qm00458k
  • [51] Olanrewaju, A., Beaugrand, M., Yafia, M. and Juncker, D., 2018. ‘Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits’, Lab. Chip. 18(16), 2323–2347. DOI: 10.1039/c8lc00458g
  • [52] Mugele, F., Klingner, A., Buehrle, J., Steinhauser, D. and Herminghaus, S., 2005. ‘Electrowetting: a convenient way to switchable wettability patterns’, J. Phys.: Condens. Matter 17, 559–576. DOI: 10.1088/0953-8984/17/9/016
There are 51 citations in total.

Details

Primary Language English
Subjects Engineering, Mechanical Engineering (Other)
Journal Section Articles
Authors

Mehmet Alptug Boylu This is me 0000-0003-1856-7606

Umut Ceyhan 0000-0003-0033-1013

Early Pub Date September 16, 2023
Publication Date September 27, 2023
Published in Issue Year 2023

Cite

APA Boylu, M. A., & Ceyhan, U. (2023). Controlling the Motion of Interfaces in Capillary Channels with Non-uniform Surface Wettability. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(75), 675-691. https://doi.org/10.21205/deufmd.2023257513
AMA Boylu MA, Ceyhan U. Controlling the Motion of Interfaces in Capillary Channels with Non-uniform Surface Wettability. DEUFMD. September 2023;25(75):675-691. doi:10.21205/deufmd.2023257513
Chicago Boylu, Mehmet Alptug, and Umut Ceyhan. “Controlling the Motion of Interfaces in Capillary Channels With Non-Uniform Surface Wettability”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 75 (September 2023): 675-91. https://doi.org/10.21205/deufmd.2023257513.
EndNote Boylu MA, Ceyhan U (September 1, 2023) Controlling the Motion of Interfaces in Capillary Channels with Non-uniform Surface Wettability. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 75 675–691.
IEEE M. A. Boylu and U. Ceyhan, “Controlling the Motion of Interfaces in Capillary Channels with Non-uniform Surface Wettability”, DEUFMD, vol. 25, no. 75, pp. 675–691, 2023, doi: 10.21205/deufmd.2023257513.
ISNAD Boylu, Mehmet Alptug - Ceyhan, Umut. “Controlling the Motion of Interfaces in Capillary Channels With Non-Uniform Surface Wettability”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/75 (September 2023), 675-691. https://doi.org/10.21205/deufmd.2023257513.
JAMA Boylu MA, Ceyhan U. Controlling the Motion of Interfaces in Capillary Channels with Non-uniform Surface Wettability. DEUFMD. 2023;25:675–691.
MLA Boylu, Mehmet Alptug and Umut Ceyhan. “Controlling the Motion of Interfaces in Capillary Channels With Non-Uniform Surface Wettability”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 75, 2023, pp. 675-91, doi:10.21205/deufmd.2023257513.
Vancouver Boylu MA, Ceyhan U. Controlling the Motion of Interfaces in Capillary Channels with Non-uniform Surface Wettability. DEUFMD. 2023;25(75):675-91.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.