Research Article
BibTex RIS Cite

Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics

Year 2023, , 769 - 780, 27.09.2023
https://doi.org/10.21205/deufmd.2023257520

Abstract

This study aims to investigate the effects of irrigation needles geometries on the flow inside the root canal and compare their irrigation performances based on Computational Fluid Dynamics (CFD) analyzes. CFD simulations of three commonly used close-ended irrigation needles were performed for various inlet Reynolds numbers and working lengths. Their irrigation performances were evaluated based on apical pressure and wall shear stress. The flow was assumed to be incompressible, turbulent and steady at all inlet Reynolds numbers. The closed-ended needles showed similar limited irrigant penetration toward the apex. Among all configurations, the Model C outperforms others as it provides the highest wall shear stress around the needle tip and the lowest apical pressures in the apical foramen, which reduces the risk of apical extrusion. The needle tip designs influence important parameters for the effectiveness and safety of the irrigation process.

References

  • [1] Loroño, G., Zaldívar, J. M. R., Jimenez‐Octavio, J. R., Dorado, S., Arias, A., & Cisneros, R. 2020. CFD analysis on the effect of combining positive and negative pressure during the irrigation of artificial isthmuses. International Journal for Numerical Methods in Biomedical Engineering, 36(10), e3385. DOI: 10.1002/cnm.3385
  • [2] Zehnder, M. (2006). Root canal irrigants. Journal of endodontics, 32(5), 389-398. DOI: 10.1016/j.joen.2005.09.014
  • [3] Verma, P., & Love, R. M. (2011). A Micro CT study of the mesiobuccal root canal morphology of the maxillary first molar tooth. International endodontic journal, 44(3), 210-217. DOI: 10.1111/j.1365-2591.2010.01800.x
  • [4] Villas-Bôas, M. H., Bernardineli, N., Cavenago, B. C., Marciano, M., del Carpio-Perochena, A., De Moraes, I. G.,Ordinola-Zapata, R. 2011. Micro–computed tomography study of the internal anatomy of mesial root canals of mandibular molars. Journal of endodontics, 37(12), 1682-1686. DOI: 10.1016/j.joen.2011.08.001
  • [5] Lam, M. S., Chang, J. W., & Cheung, G. S. 2021. Ex vivo shaping ability of reciprocating instruments operated by new users: Reciproc versus WaveOne. Clinical Oral Investigations, 25(5), 2791-2799. DOI: 10.1007/s00784-020-03593-x
  • [6] Esentürk, G., Akkas, E., Cubukcu, E., Nagas, E., Uyanik, O., & Cehreli, Z. C. 2020. A micro‐computed tomographic assessment of root canal preparation with conventional and different rotary files in primary teeth and young permanent teeth. International Journal of Paediatric Dentistry, 30(2), 202-208. DOI: 10.1111/ipd.12587
  • [7] Peters, O. A., Laib, A., Göhring, T. N., & Barbakow, F. 2001. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. Journal of endodontics, Cilt. 27(1), s. 1-6.
  • [8] Peters, O. A., Laib, A., Göhring, T. N., & Barbakow, F. 2001. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. Journal of endodontics, 27(1), 1-6. DOI: 10.1097/00004770-200101000-00001
  • [9] Boutsioukis, C., Verhaagen, B., Versluis, M., Kastrinakis, E., & Van Der Sluis, L. W. M. 2010. Irrigant flow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using high‐speed imaging. International Endodontic Journal, 43(5), 393-403. DOI: 10.1111/j.1365-2591.2010.01692.x
  • [10] Goldman, M., Kronman, J. H., Goldman, L. B., Clausen, H., & Grady, J. 1976. New method of irrigation during endodontic treatment. Journal of endodontics, 2(9), 257-260. DOI: 10.1016/S0099-2399(76)80085-4
  • [11] Kahn, F. H., Rosenberg, P. A., & Gliksberg, J. 1995. An in vitro evaluation of the irrigating characteristics of ultrasonic and subsonic handpieces and irrigating needles and probes. Journal of endodontics, 21(5), 277-280. DOI: 10.1016/S0099-2399(06)80998-2
  • [12] Ram, Salzgeber, R. M., & Brilliant, J. D. 1977. An in vivo evaluation of the penetration of an irrigating solution in root canals. Journal of endodontics, 3(10), 394-398. DOI: 10.1016/S0099-2399(77)80172-6
  • [13] Z. 1977. Effectiveness of root canal irrigation. Oral Surgery, Oral Medicine, Oral Pathology, 44(2), 306-312. DOI: 10.1016/0030-4220(77)90285-7
  • [14] Abou-Rass, M., & Piccinino, M. V. 1982. The effectiveness of four clinical irrigation methods on the removal of root canal debris. Oral Surgery, Oral Medicine, Oral Pathology, 54(3), 323-328. DOI: 10.1016/0030-4220(82)90103-7
  • [15] Sedgley, C., Applegate, B., Nagel, A., & Hall, D. (2004). Real-time imaging and quantification of bioluminescent bacteria in root canals in vitro. Journal of endodontics, 30(12), 893-898. DOI: 10.1097/01.DON.0000132299.02265.6C
  • [16] Raj, S., Dhingra, A., Jha, P., Nikhil, V., Ravinder, R., & Mishra, P. 2021. To compare the continuous and intermittent irrigation method on the removal of dentin debris from root canals and to evaluate the dynamics of irrigant flow using computational fluid dynamics. Journal of Conservative Dentistry: JCD, 24(1), 94-99. DOI: 10.4103/jcd.jcd_636_20
  • [17] Perry, R.H., Green, D. W., & Southard, M. Z. 2019. Perry's chemical engineers' handbook. McGraw-Hill Education.
  • [18] Boutsioukis, C., Lambrianidis, T., Verhaagen, B., Versluis, M., Kastrinakis, E., Wesselink, P. R., & van der Sluis, L. W. 2010. The effect of needle-insertion depth on the irrigant flow in the root canal: evaluation using an unsteady computational fluid dynamics model. Journal of Endodontics, 36(10), 1664-1668. DOI: 10.1016/j.joen.2010.06.023
  • [19] Ansys, I. 2011. ANSYS FLUENT theory guide. Canonsburg, Pa, 794.
  • [20] Menter, F. R. 1992. Improved two-equation k-omega turbulence models for aerodynamic flows (No. A-92183).
  • [21] Druttman, A. C. S., & Stock, C. J. R. 1989. An in vitro comparison of ultrasonic and conventional methods of irrigant replacement. International Endodontic Journal, 22(4), 174-178. DOI: 10.1111/j.1365-2591.1989.tb00920.x
  • [22] Boutsioukis, C., Lambrianidis, T., & Kastrinakis, E. 2009. Irrigant flow within a prepared root canal using various flow rates: a computational fluid dynamics study. International Endodontic Journal, Cilt. 42(2), s. 144-155. DOI: 10.1111/j.1365-2591.2008.01503.x
  • [23] Boutsioukis, C., Verhaagen, B., Versluis, M., Kastrinakis, E., Wesselink, P. R., & van der Sluis, L. W. 2010. Evaluation of irrigant flow in the root canal using different needle types by an unsteady computational fluid dynamics model. Journal of endodontics, 36(5), 875-879. DOI: 10.1016/j.joen.2009.12.026
  • [24] Guerisoli, D. M. Z., Silva, R. S. D., & Pécora, J. D. 1998. Evaluation of some physico-chemical properties of different concentrations of sodium hypochlorite solutions. Braz Endod J, 3(2), 21-3.
  • [25] Gulabivala, K., Ng, Y. L., Gilbertson, M., & Eames, I. 2010. The fluid mechanics of root canal irrigation. Physiological measurement, 31(12), 49.
  • [26] Boutsioukis, C., Lambrianidis, T., Kastrinakis, E., & Bekiaroglou, P. 2007. Measurement of pressure and flow rates during irrigation of a root canal ex vivo with three endodontic needles. International Endodontic Journal, 40(7), 504-513. DOI: 10.1111/j.1365-2591.2007.01244.x
  • [27] Shen, Y., Gao, Y., Qian, W., Ruse, N. D., Zhou, X., Wu, H., & Haapasalo, M. 2010. Three-dimensional numeric simulation of root canal irrigant flow with different irrigation needles. Journal of Endodontics, 36(5), 884-889. DOI: 10.1016/j.joen.2009.12.010
  • [28] Wang, R., Shen, Y., Ma, J., Huang, D., Zhou, X., Gao, Y., & Haapasalo, M. 2015. Evaluation of the effect of needle position on irrigant flow in the C-shaped root canal using a computational fluid dynamics model. Journal of endodontics, 41(6), 931-936. DOI: 10.1016/j.joen.2015.02.002
  • [29] Vinothkumar, T. S., Kavitha, S., Lakshminarayanan, L., Gomathi, N. S., & Kumar, V. 2007. Influence of irrigating needle-tip designs in removing bacteria inoculated into instrumented root canals measured using single-tube luminometer. Journal of endodontics, 33(6), 746-748. DOI: 10.1016/j.joen.2007.02.013
  • [30] Lambrianidis, T., Tosounidou, E., & Tzoanopoulou, M. 2001. The effect of maintaining apical patency on periapical extrusion. Journal of Endodontics, 27(11), 696-698. DOI: 10.1097/00004770-200111000-00011
  • [31] Guyton, A. C., Granger, H. J., & Taylor, A. E. 1971. Interstitial fluid pressure. Physiological reviews, 51(3), 527-563. DOI: 10.1152/physrev.1971.51.3.527
  • [32] Šnjarić, D., Čarija, Z., Braut, A., Halaji, A., Kovačević, M., & Kuiš, D. 2012. Irrigation of human prepared root canal–ex vivo based computational fluid dynamics analysis. Croatian medical journal, 53(5), 470-479. DOI: 10.3325/cmj.2012.53.470
  • [33] Zhu, W. C., Gyamfi, J., Niu, L. N., Schoeffel, G. J., Liu, S. Y., Santarcangelo, F., ... & Tay, F. R. (2013). Anatomy of sodium hypochlorite accidents involving facial ecchymosis—a review. Journal of dentistry, 41(11), 935-948. DOI: 10.1016/j.jdent.2013.08.012

Farklı İğne Tasarımlarının Diş Kanalı İrrigasyonu Üzerindeki Etkilerinin Hesaplamalı Akışkanlar Dinamiği ile İncelenmesi

Year 2023, , 769 - 780, 27.09.2023
https://doi.org/10.21205/deufmd.2023257520

Abstract

Bu çalışma, bir dişin kök kanalının irrigasyonunda kullanılan iğnelerinin geometrilerinin kök kanalı içindeki akış üzerine etkilerini araştırmayı ve bunların irrigasyon performanslarını “Hesaplamalı Akışkanlar Dinamiği (HAD)” analizlerine dayanarak karşılaştırmayı amaçlamaktadır. Çeşitli giriş Reynolds sayıları ve çalışma uzunlukları için yaygın olarak kullanılan üç adet yandan perfore irrigasyon iğnesinin HAD simülasyonları yapıldı. Bunların irrigasyon performansları apikal bölgedeki ortalama basınç ve kanal boyunca ortalama duvar kayma gerilmesine dayalı olarak değerlendirildi. İncelenen tüm giriş Reynolds sayılarında akışın sıkıştırılamaz, türbülanslı ve daimi olduğu varsayıldı. İncelenen yandan perfore iğnelerin irrigasyon performansı apekse doğru ilerledikçe benzer şekilde doyuma ulaşmaktadır. Tüm konfigürasyonlar arasında Model C, iğne ucu çevresinde en yüksek duvar kayma gerilimini ve apikal foramende en düşük apikal basınçları sağlayarak apikal ekstrüzyon riskini azalttığı için diğerlerinden daha iyi performans gösterdi. İğne ucu tasarımları, irrigasyonun verilmiliği ve güvenliği için önemli parametreleri etkilemektedir.

References

  • [1] Loroño, G., Zaldívar, J. M. R., Jimenez‐Octavio, J. R., Dorado, S., Arias, A., & Cisneros, R. 2020. CFD analysis on the effect of combining positive and negative pressure during the irrigation of artificial isthmuses. International Journal for Numerical Methods in Biomedical Engineering, 36(10), e3385. DOI: 10.1002/cnm.3385
  • [2] Zehnder, M. (2006). Root canal irrigants. Journal of endodontics, 32(5), 389-398. DOI: 10.1016/j.joen.2005.09.014
  • [3] Verma, P., & Love, R. M. (2011). A Micro CT study of the mesiobuccal root canal morphology of the maxillary first molar tooth. International endodontic journal, 44(3), 210-217. DOI: 10.1111/j.1365-2591.2010.01800.x
  • [4] Villas-Bôas, M. H., Bernardineli, N., Cavenago, B. C., Marciano, M., del Carpio-Perochena, A., De Moraes, I. G.,Ordinola-Zapata, R. 2011. Micro–computed tomography study of the internal anatomy of mesial root canals of mandibular molars. Journal of endodontics, 37(12), 1682-1686. DOI: 10.1016/j.joen.2011.08.001
  • [5] Lam, M. S., Chang, J. W., & Cheung, G. S. 2021. Ex vivo shaping ability of reciprocating instruments operated by new users: Reciproc versus WaveOne. Clinical Oral Investigations, 25(5), 2791-2799. DOI: 10.1007/s00784-020-03593-x
  • [6] Esentürk, G., Akkas, E., Cubukcu, E., Nagas, E., Uyanik, O., & Cehreli, Z. C. 2020. A micro‐computed tomographic assessment of root canal preparation with conventional and different rotary files in primary teeth and young permanent teeth. International Journal of Paediatric Dentistry, 30(2), 202-208. DOI: 10.1111/ipd.12587
  • [7] Peters, O. A., Laib, A., Göhring, T. N., & Barbakow, F. 2001. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. Journal of endodontics, Cilt. 27(1), s. 1-6.
  • [8] Peters, O. A., Laib, A., Göhring, T. N., & Barbakow, F. 2001. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. Journal of endodontics, 27(1), 1-6. DOI: 10.1097/00004770-200101000-00001
  • [9] Boutsioukis, C., Verhaagen, B., Versluis, M., Kastrinakis, E., & Van Der Sluis, L. W. M. 2010. Irrigant flow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using high‐speed imaging. International Endodontic Journal, 43(5), 393-403. DOI: 10.1111/j.1365-2591.2010.01692.x
  • [10] Goldman, M., Kronman, J. H., Goldman, L. B., Clausen, H., & Grady, J. 1976. New method of irrigation during endodontic treatment. Journal of endodontics, 2(9), 257-260. DOI: 10.1016/S0099-2399(76)80085-4
  • [11] Kahn, F. H., Rosenberg, P. A., & Gliksberg, J. 1995. An in vitro evaluation of the irrigating characteristics of ultrasonic and subsonic handpieces and irrigating needles and probes. Journal of endodontics, 21(5), 277-280. DOI: 10.1016/S0099-2399(06)80998-2
  • [12] Ram, Salzgeber, R. M., & Brilliant, J. D. 1977. An in vivo evaluation of the penetration of an irrigating solution in root canals. Journal of endodontics, 3(10), 394-398. DOI: 10.1016/S0099-2399(77)80172-6
  • [13] Z. 1977. Effectiveness of root canal irrigation. Oral Surgery, Oral Medicine, Oral Pathology, 44(2), 306-312. DOI: 10.1016/0030-4220(77)90285-7
  • [14] Abou-Rass, M., & Piccinino, M. V. 1982. The effectiveness of four clinical irrigation methods on the removal of root canal debris. Oral Surgery, Oral Medicine, Oral Pathology, 54(3), 323-328. DOI: 10.1016/0030-4220(82)90103-7
  • [15] Sedgley, C., Applegate, B., Nagel, A., & Hall, D. (2004). Real-time imaging and quantification of bioluminescent bacteria in root canals in vitro. Journal of endodontics, 30(12), 893-898. DOI: 10.1097/01.DON.0000132299.02265.6C
  • [16] Raj, S., Dhingra, A., Jha, P., Nikhil, V., Ravinder, R., & Mishra, P. 2021. To compare the continuous and intermittent irrigation method on the removal of dentin debris from root canals and to evaluate the dynamics of irrigant flow using computational fluid dynamics. Journal of Conservative Dentistry: JCD, 24(1), 94-99. DOI: 10.4103/jcd.jcd_636_20
  • [17] Perry, R.H., Green, D. W., & Southard, M. Z. 2019. Perry's chemical engineers' handbook. McGraw-Hill Education.
  • [18] Boutsioukis, C., Lambrianidis, T., Verhaagen, B., Versluis, M., Kastrinakis, E., Wesselink, P. R., & van der Sluis, L. W. 2010. The effect of needle-insertion depth on the irrigant flow in the root canal: evaluation using an unsteady computational fluid dynamics model. Journal of Endodontics, 36(10), 1664-1668. DOI: 10.1016/j.joen.2010.06.023
  • [19] Ansys, I. 2011. ANSYS FLUENT theory guide. Canonsburg, Pa, 794.
  • [20] Menter, F. R. 1992. Improved two-equation k-omega turbulence models for aerodynamic flows (No. A-92183).
  • [21] Druttman, A. C. S., & Stock, C. J. R. 1989. An in vitro comparison of ultrasonic and conventional methods of irrigant replacement. International Endodontic Journal, 22(4), 174-178. DOI: 10.1111/j.1365-2591.1989.tb00920.x
  • [22] Boutsioukis, C., Lambrianidis, T., & Kastrinakis, E. 2009. Irrigant flow within a prepared root canal using various flow rates: a computational fluid dynamics study. International Endodontic Journal, Cilt. 42(2), s. 144-155. DOI: 10.1111/j.1365-2591.2008.01503.x
  • [23] Boutsioukis, C., Verhaagen, B., Versluis, M., Kastrinakis, E., Wesselink, P. R., & van der Sluis, L. W. 2010. Evaluation of irrigant flow in the root canal using different needle types by an unsteady computational fluid dynamics model. Journal of endodontics, 36(5), 875-879. DOI: 10.1016/j.joen.2009.12.026
  • [24] Guerisoli, D. M. Z., Silva, R. S. D., & Pécora, J. D. 1998. Evaluation of some physico-chemical properties of different concentrations of sodium hypochlorite solutions. Braz Endod J, 3(2), 21-3.
  • [25] Gulabivala, K., Ng, Y. L., Gilbertson, M., & Eames, I. 2010. The fluid mechanics of root canal irrigation. Physiological measurement, 31(12), 49.
  • [26] Boutsioukis, C., Lambrianidis, T., Kastrinakis, E., & Bekiaroglou, P. 2007. Measurement of pressure and flow rates during irrigation of a root canal ex vivo with three endodontic needles. International Endodontic Journal, 40(7), 504-513. DOI: 10.1111/j.1365-2591.2007.01244.x
  • [27] Shen, Y., Gao, Y., Qian, W., Ruse, N. D., Zhou, X., Wu, H., & Haapasalo, M. 2010. Three-dimensional numeric simulation of root canal irrigant flow with different irrigation needles. Journal of Endodontics, 36(5), 884-889. DOI: 10.1016/j.joen.2009.12.010
  • [28] Wang, R., Shen, Y., Ma, J., Huang, D., Zhou, X., Gao, Y., & Haapasalo, M. 2015. Evaluation of the effect of needle position on irrigant flow in the C-shaped root canal using a computational fluid dynamics model. Journal of endodontics, 41(6), 931-936. DOI: 10.1016/j.joen.2015.02.002
  • [29] Vinothkumar, T. S., Kavitha, S., Lakshminarayanan, L., Gomathi, N. S., & Kumar, V. 2007. Influence of irrigating needle-tip designs in removing bacteria inoculated into instrumented root canals measured using single-tube luminometer. Journal of endodontics, 33(6), 746-748. DOI: 10.1016/j.joen.2007.02.013
  • [30] Lambrianidis, T., Tosounidou, E., & Tzoanopoulou, M. 2001. The effect of maintaining apical patency on periapical extrusion. Journal of Endodontics, 27(11), 696-698. DOI: 10.1097/00004770-200111000-00011
  • [31] Guyton, A. C., Granger, H. J., & Taylor, A. E. 1971. Interstitial fluid pressure. Physiological reviews, 51(3), 527-563. DOI: 10.1152/physrev.1971.51.3.527
  • [32] Šnjarić, D., Čarija, Z., Braut, A., Halaji, A., Kovačević, M., & Kuiš, D. 2012. Irrigation of human prepared root canal–ex vivo based computational fluid dynamics analysis. Croatian medical journal, 53(5), 470-479. DOI: 10.3325/cmj.2012.53.470
  • [33] Zhu, W. C., Gyamfi, J., Niu, L. N., Schoeffel, G. J., Liu, S. Y., Santarcangelo, F., ... & Tay, F. R. (2013). Anatomy of sodium hypochlorite accidents involving facial ecchymosis—a review. Journal of dentistry, 41(11), 935-948. DOI: 10.1016/j.jdent.2013.08.012
There are 33 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Articles
Authors

Selin Bulgu 0000-0002-4745-5315

Alperen Yıldızeli 0000-0002-1097-1359

Sertaç Çadırcı 0000-0002-2281-721X

Sema Yıldırım 0000-0001-7235-6768

Early Pub Date September 16, 2023
Publication Date September 27, 2023
Published in Issue Year 2023

Cite

APA Bulgu, S., Yıldızeli, A., Çadırcı, S., Yıldırım, S. (2023). Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(75), 769-780. https://doi.org/10.21205/deufmd.2023257520
AMA Bulgu S, Yıldızeli A, Çadırcı S, Yıldırım S. Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics. DEUFMD. September 2023;25(75):769-780. doi:10.21205/deufmd.2023257520
Chicago Bulgu, Selin, Alperen Yıldızeli, Sertaç Çadırcı, and Sema Yıldırım. “Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 75 (September 2023): 769-80. https://doi.org/10.21205/deufmd.2023257520.
EndNote Bulgu S, Yıldızeli A, Çadırcı S, Yıldırım S (September 1, 2023) Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 75 769–780.
IEEE S. Bulgu, A. Yıldızeli, S. Çadırcı, and S. Yıldırım, “Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics”, DEUFMD, vol. 25, no. 75, pp. 769–780, 2023, doi: 10.21205/deufmd.2023257520.
ISNAD Bulgu, Selin et al. “Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/75 (September 2023), 769-780. https://doi.org/10.21205/deufmd.2023257520.
JAMA Bulgu S, Yıldızeli A, Çadırcı S, Yıldırım S. Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics. DEUFMD. 2023;25:769–780.
MLA Bulgu, Selin et al. “Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 75, 2023, pp. 769-80, doi:10.21205/deufmd.2023257520.
Vancouver Bulgu S, Yıldızeli A, Çadırcı S, Yıldırım S. Investigation of the Effects of Needle Designs on the Root Canal Irrigation Using Computational Fluid Dynamics. DEUFMD. 2023;25(75):769-80.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.