Considering the environmental damage caused by depleting fossil fuels such as coal, oil, and natural gas, the use of renewable and clean energy sources is of vital importance. Considering the energy consumed for cooling, especially when solar energy is abundant, it is crucial to meet this spent energy from solar energy. In this study, the theoretical analysis of solar absorption cooling system (SACS) has been made. The energy required for the system's operation and cooling is obtained from solar energy using a parabolic trough collector (PTC). Within the scope of the study, the effect of the use of nanofluids formed by adding different nanoparticles (Al2 O3 , CeO2 , CuO, TiO2 ) to the base fluid Syltherm 800, which is used as a heat transfer fluid in PTC on the system efficiency values were investigated. As a result of the analyses made, the highest increase rates of 0.15% in collector efficiency, 0.13% in COP value, and exergy efficiency of SACS were determined when Syltherm 800+CeO 2 nanofluid instead of the base fluid Syltherm 800 in PTC was used. In addition, it was calculated that the highest increase in the exergy efficiency of PTC was 0.08% when Syltherm 800+Ti02 nanofluid was used instead of the base fluid.
Hamada, M.A., Khalil, H., Al-Sood, M.M.A., Sharshir, S.W. 2023. An experimental investigation of nanofluid, nanocoating, and energy storage materials on the performance of parabolic trough collector, Applied Thermal Engineering, Cilt. 219, 119450. DOI: 10.1016/j.applthermaleng.2022.119450
Zafar, M.F., Ali, M., Akhter, J., Kaleem, M., Sheikh, N.A. 2022. Characterization and performance investigation of metallic oxides based nanofluids in compound parabolic concentrating solar collector, Sustainable Energy Technologies and Assessments Cilt. 54, 102786. DOI: 10.1016/j.seta.2022.102786
Mazloumi, M., Naghashzadegan, M., Javaherdeh, K. 2008. Simulation of solar lithium bromide–water absorption cooling system with parabolic trough collector, Energy Conversion and Management, Cilt. 49,s.2820–2832. DOI:10.1016/j.enconman.2008.03.014
Bellos, E., Tzivanidis, C., Pavlovic, S., Stefanovic, V. 2017. Thermodynamic investigation of LiCl-H2O working pair in a double effect absorption chiller driven by parabolic trough collectors, Thermal Science and Engineering Progress, Cilt. 3, s. 75–87. DOI: 10.1016/j.tsep.2017.06.005
Asadi, J., Amani, P., Amani, M., Kasaeian, A. And Bahiraei, M. 2018. Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors, Energy Conversion and Management, Cilt. 173, s. 715–727. DOI: 10.1016/j.enconman.2018.08.013
Bellos, E., Tzivanidis, C. 2018. Parametric analysis and optimization of a cooling system with ejector-absorption chiller powered by solar parabolic trough collectors, Energy Conversion and Management, Cilt. 168,s.329–342. DOI:10.1016/j.enconman.2018.05.024
Bellos, E., Tzivanidis, C. 2018. Performance analysis and optimization of an absorption chiller driven by nanofluid based solar flat plate collector, Journal of Cleaner Production, Cilt. 174, s. 256-272. DOI: 10.1016/j.jclepro.2017.10.313
Gogoi, T.K., Saikia, S. 2019. Performance analysis of a solar heat driven organic Rankine cycle and absorption cooling system, Thermal Science and Engineering Progress, Cilt 13, 100372. DOI: 10.1016/j.tsep.2019.100372
Wu, W. Leung, M., Ding, Z., Huang, H., Bai, Y., Deng, L. 2020. Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles, Applied Thermal Engineering, Cilt. 172, 115145. DOI: 10.1016/j.applthermaleng.2020.115145
Alirahmi, S.M., Dabbagh, S.R., Ahmadi, P., Wongwises, S. 2020. Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy, Energy Conversion and Management, Cilt. 205, 112426. DOI: 10.1016/j.enconman.2019.112426
Valles, M., Bourouis, M., Boer D. 2020. Solar-driven absorption cycle for space heating and cooling, Applied Thermal Engineering, Cilt. 168, 114836. DOI: 10.1016/j.applthermaleng.2019.114836
Bamisile, O., Huang, Q., Hu W., Dagbasi, M., Kemena, A.D. 2020. Performance analysis of a novel solar PTC integrated system for multi-generation with hydrogen production, International Journal of Hydrogen Energy, Cilt. 45, s. 190-206. DOI: 10.1016/j.ijhydene.2019.10.234
Abid, M., Khan M.S., Ratlamwala, T.A.H., Malik, M.N., Ali H.M., Cheok, Q. 2021. Thermodynamic analysis and comparison of different absorption cycles driven by evacuated tube solar collector utilizing hybrid nanofluids, Energy Conversion and Management, Cilt. 246, 114673. DOI: 10.1016/j.enconman.2021.114673
Abed, A.M., Majdi, H.S., Sopian K., Ali, F.H., Al-Bahrani, M., Al-Amir, Q.R., Yakoob, A.K. 2022. Techno-Economic Analysis of dual ejectors solar assisted combined absorption cooling cycle, Case Studies in Thermal Engineering, Cilt. 39, 102423. DOI: 10.1016/j.csite.2022.102423
Duffie, J.A., Beckman, W.A., Blair, N. 2020. Solar Engineering of Thermal Processes, Photovoltaics and Wind. 5nd edition. John Wiley and Sons, 905s.
Kırtepe, E., Yılmaz, R., Özbalta, N., 2019. Parabolik Yoğunlaştıran Toplayıcıların Teorik Modellenmesi ve Farklı Sistem Parametrelerinin Verime Etkisinin İncelenmesi. 22. Ulusal Isı Bilimi ve Tekniği Kongresi, 11-14 Eylül, Kocaeli, 781-790.
FORRİSTALL, R. 2003. Heat Transfer Analysis and Modelling of A Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. National Renewable Energy Laboratory, NREL/TP-550-34169.
Lamrani, B., Khouya, A., Zeghmati, B., Draoui, A. 2018. Mathematical modeling and numerical simulation of a parabolic trough collector: A case study in thermal engineering, Thermal Science and Engineering Progress, Cilt. 8, s. 47–54. DOI: 10.1016/j.tsep.2018.07.015
Bellos, E., Tzivanidis, C. 2017. Parametric investigation of nanofluids utilization in parabolic trough collectors, Thermal Science and Engineering Progress, Cilt. 2, s. 71–79. DOI: 10.1016/j.tsep.2017.05.001
Al‑Oran, O., Lezsovits, F., Aljawabrah, A. 2020. Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids, Journal of Thermal Analysis and Calorimetry, Cilt. 140, s. 1579–1596. DOI: 10.1007/s10973-020-09371-x
Bellos, E., Tzivanidis, C. 2018. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids, Sustainable Energy Technologies and Assessments, Cilt. 26, s. 105–115. DOI: 10.1016/j.seta.2017.10.005
Pak, B.C., Cho, Y.I. 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, Cilt. 11. s. 151-170, DOI: 10.1080/08916159808946559
Bellos, E., Tzivanidis, C. 2019. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors, Journal of Thermal Analysis and Calorimetry, Cilt. 135, s. 597–608. DOI: 10.1007/s10973-018-7056-7
Abubakr, M., Amein, H., Akoush, B.M., El-Bakry M.M., Hassan, M.A. 2020. An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids, Renewable Energy, Cilt. 157, s. 130-149. DOI: 10.1016/j.renene.2020.04.160
Bellos, E., Tzivanidis, C. 2017. Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors, Renewable Energy, Cilt. 114, s. 1376-1393. DOI: 10.1016/j.renene.2017.06.055
Sharafeldin, M.A., Grof, G. 2018. Evacuated tube solar collector performance using CeO2/water nanofluid, Journal of Cleaner Production, Cilt. 185, s. 347-356. DOI: 10.1016/j.jclepro.2018.03.054
Basbous, N., Taqi, M., Janan, M.A. 2016. Thermal Performances Analysis of a Parabolic Trough Solar Collector Using Different Nanofluids, International Renewable and Sustainable Energy Conference (IRSEC), 14-17 Kasım, Marrakech, Morocco. DOI: 10.1109/IRSEC.2016.7984006
Bellos, E., Tzivanidis, C., Antonopoulos, K.A. 2016. Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types, Applied Thermal Engineering, Cilt. 102, s. 749–759. DOI: 10.1016/j.applthermaleng.2016.04.032
Bellos, E., Tzivanidis, C., Symeou, C., Antonopoulos, K.A. 2017. Energetic, exergetic and financial evaluation of a solar driven absorption chiller – A dynamic approach, Energy Conversion and Management, Cilt. 137, s. 34–48. DOI: 10.1016/j.enconman.2017.01.041
ASHRAE. 2009 ASHRAE Handbook—Fundamentals (SI Edition). Chapter 30, Thermophysical Properties Of Refrigerants, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
Dudley V.E., Kolb G.J., Mahoney A.R., Mancini T.R., Matthews C.W., Sloan M., Kearney D. 1994. Test Results: SEGS LS-2 Solar Collector, Report of Sandia National Laboratories (SANDIA-94-1884), 140s.
Herold, K.E., Radermacher, R., Klein, S.A. 2016. Absorption Chillers and Heat Pumps, 2nd edition. CRC Press, Taylor & Francis Group, 346s.
Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi
Kömür, petrol ve doğal gaz gibi tükenmekte olan fosil kökenli yakıtların çevreye verdiği zararlar dikkate alındığında yenilenebilir ve temiz enerji kaynaklarının kullanımı hayati derecede önem arz etmektedir. Özellikle güneş enerjisinin bol olduğu zamanlarda soğutma ihtiyacı için harcanan enerji dikkate alındığında bu harcanan enerjinin güneş enerjisinden karşılanması önemlidir. Bu çalışmada güneş enerjili absorpsiyonlu soğutma sisteminin (GEASS) teorik analizi yapılmıştır. Sistemin çalışması ve soğutmanın yapılabilmesi için gerekli enerji parabolik oluk tipi kolektör (POTK) vasıtası ile güneş enerjisinden elde edilmektedir. Çalışma kapsamında POTK’de ısı transfer akışkanı olarak kullanılan temel akışkan Syltherm 800’e farklı nanopartiküller eklenmesi (Al2 O3 , CeO2 , CuO, TiO2 ) ile oluşturulan nanoakışkanların kullanılmasının sistem verimlilik değerlerine etkisi incelenmiştir. Yapılan analizler sonucunda POTK’de temel akışkan Syltherm 800 yerine Syltherm 800+CeO 2 nanoakışkanın kullanılması durumunda kolektör veriminde %0,15, GEASS’nin COP değeri ve ekserji veriminde ise %0,13’lük en yüksek artış oranları olduğu belirlenmiştir. Ayrıca POTK’nin ekserji veriminde en yüksek artış oranı %0,08 olarak temel akışkan Syltherm 800 yerine Syltherm 800+Ti02 nanoakışkanının kullanıldığı durumda olduğu hesaplanmıştır.
Hamada, M.A., Khalil, H., Al-Sood, M.M.A., Sharshir, S.W. 2023. An experimental investigation of nanofluid, nanocoating, and energy storage materials on the performance of parabolic trough collector, Applied Thermal Engineering, Cilt. 219, 119450. DOI: 10.1016/j.applthermaleng.2022.119450
Zafar, M.F., Ali, M., Akhter, J., Kaleem, M., Sheikh, N.A. 2022. Characterization and performance investigation of metallic oxides based nanofluids in compound parabolic concentrating solar collector, Sustainable Energy Technologies and Assessments Cilt. 54, 102786. DOI: 10.1016/j.seta.2022.102786
Mazloumi, M., Naghashzadegan, M., Javaherdeh, K. 2008. Simulation of solar lithium bromide–water absorption cooling system with parabolic trough collector, Energy Conversion and Management, Cilt. 49,s.2820–2832. DOI:10.1016/j.enconman.2008.03.014
Bellos, E., Tzivanidis, C., Pavlovic, S., Stefanovic, V. 2017. Thermodynamic investigation of LiCl-H2O working pair in a double effect absorption chiller driven by parabolic trough collectors, Thermal Science and Engineering Progress, Cilt. 3, s. 75–87. DOI: 10.1016/j.tsep.2017.06.005
Asadi, J., Amani, P., Amani, M., Kasaeian, A. And Bahiraei, M. 2018. Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors, Energy Conversion and Management, Cilt. 173, s. 715–727. DOI: 10.1016/j.enconman.2018.08.013
Bellos, E., Tzivanidis, C. 2018. Parametric analysis and optimization of a cooling system with ejector-absorption chiller powered by solar parabolic trough collectors, Energy Conversion and Management, Cilt. 168,s.329–342. DOI:10.1016/j.enconman.2018.05.024
Bellos, E., Tzivanidis, C. 2018. Performance analysis and optimization of an absorption chiller driven by nanofluid based solar flat plate collector, Journal of Cleaner Production, Cilt. 174, s. 256-272. DOI: 10.1016/j.jclepro.2017.10.313
Gogoi, T.K., Saikia, S. 2019. Performance analysis of a solar heat driven organic Rankine cycle and absorption cooling system, Thermal Science and Engineering Progress, Cilt 13, 100372. DOI: 10.1016/j.tsep.2019.100372
Wu, W. Leung, M., Ding, Z., Huang, H., Bai, Y., Deng, L. 2020. Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles, Applied Thermal Engineering, Cilt. 172, 115145. DOI: 10.1016/j.applthermaleng.2020.115145
Alirahmi, S.M., Dabbagh, S.R., Ahmadi, P., Wongwises, S. 2020. Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy, Energy Conversion and Management, Cilt. 205, 112426. DOI: 10.1016/j.enconman.2019.112426
Valles, M., Bourouis, M., Boer D. 2020. Solar-driven absorption cycle for space heating and cooling, Applied Thermal Engineering, Cilt. 168, 114836. DOI: 10.1016/j.applthermaleng.2019.114836
Bamisile, O., Huang, Q., Hu W., Dagbasi, M., Kemena, A.D. 2020. Performance analysis of a novel solar PTC integrated system for multi-generation with hydrogen production, International Journal of Hydrogen Energy, Cilt. 45, s. 190-206. DOI: 10.1016/j.ijhydene.2019.10.234
Abid, M., Khan M.S., Ratlamwala, T.A.H., Malik, M.N., Ali H.M., Cheok, Q. 2021. Thermodynamic analysis and comparison of different absorption cycles driven by evacuated tube solar collector utilizing hybrid nanofluids, Energy Conversion and Management, Cilt. 246, 114673. DOI: 10.1016/j.enconman.2021.114673
Abed, A.M., Majdi, H.S., Sopian K., Ali, F.H., Al-Bahrani, M., Al-Amir, Q.R., Yakoob, A.K. 2022. Techno-Economic Analysis of dual ejectors solar assisted combined absorption cooling cycle, Case Studies in Thermal Engineering, Cilt. 39, 102423. DOI: 10.1016/j.csite.2022.102423
Duffie, J.A., Beckman, W.A., Blair, N. 2020. Solar Engineering of Thermal Processes, Photovoltaics and Wind. 5nd edition. John Wiley and Sons, 905s.
Kırtepe, E., Yılmaz, R., Özbalta, N., 2019. Parabolik Yoğunlaştıran Toplayıcıların Teorik Modellenmesi ve Farklı Sistem Parametrelerinin Verime Etkisinin İncelenmesi. 22. Ulusal Isı Bilimi ve Tekniği Kongresi, 11-14 Eylül, Kocaeli, 781-790.
FORRİSTALL, R. 2003. Heat Transfer Analysis and Modelling of A Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. National Renewable Energy Laboratory, NREL/TP-550-34169.
Lamrani, B., Khouya, A., Zeghmati, B., Draoui, A. 2018. Mathematical modeling and numerical simulation of a parabolic trough collector: A case study in thermal engineering, Thermal Science and Engineering Progress, Cilt. 8, s. 47–54. DOI: 10.1016/j.tsep.2018.07.015
Bellos, E., Tzivanidis, C. 2017. Parametric investigation of nanofluids utilization in parabolic trough collectors, Thermal Science and Engineering Progress, Cilt. 2, s. 71–79. DOI: 10.1016/j.tsep.2017.05.001
Al‑Oran, O., Lezsovits, F., Aljawabrah, A. 2020. Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids, Journal of Thermal Analysis and Calorimetry, Cilt. 140, s. 1579–1596. DOI: 10.1007/s10973-020-09371-x
Bellos, E., Tzivanidis, C. 2018. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids, Sustainable Energy Technologies and Assessments, Cilt. 26, s. 105–115. DOI: 10.1016/j.seta.2017.10.005
Pak, B.C., Cho, Y.I. 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, Cilt. 11. s. 151-170, DOI: 10.1080/08916159808946559
Bellos, E., Tzivanidis, C. 2019. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors, Journal of Thermal Analysis and Calorimetry, Cilt. 135, s. 597–608. DOI: 10.1007/s10973-018-7056-7
Abubakr, M., Amein, H., Akoush, B.M., El-Bakry M.M., Hassan, M.A. 2020. An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids, Renewable Energy, Cilt. 157, s. 130-149. DOI: 10.1016/j.renene.2020.04.160
Bellos, E., Tzivanidis, C. 2017. Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors, Renewable Energy, Cilt. 114, s. 1376-1393. DOI: 10.1016/j.renene.2017.06.055
Sharafeldin, M.A., Grof, G. 2018. Evacuated tube solar collector performance using CeO2/water nanofluid, Journal of Cleaner Production, Cilt. 185, s. 347-356. DOI: 10.1016/j.jclepro.2018.03.054
Basbous, N., Taqi, M., Janan, M.A. 2016. Thermal Performances Analysis of a Parabolic Trough Solar Collector Using Different Nanofluids, International Renewable and Sustainable Energy Conference (IRSEC), 14-17 Kasım, Marrakech, Morocco. DOI: 10.1109/IRSEC.2016.7984006
Bellos, E., Tzivanidis, C., Antonopoulos, K.A. 2016. Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types, Applied Thermal Engineering, Cilt. 102, s. 749–759. DOI: 10.1016/j.applthermaleng.2016.04.032
Bellos, E., Tzivanidis, C., Symeou, C., Antonopoulos, K.A. 2017. Energetic, exergetic and financial evaluation of a solar driven absorption chiller – A dynamic approach, Energy Conversion and Management, Cilt. 137, s. 34–48. DOI: 10.1016/j.enconman.2017.01.041
ASHRAE. 2009 ASHRAE Handbook—Fundamentals (SI Edition). Chapter 30, Thermophysical Properties Of Refrigerants, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
Dudley V.E., Kolb G.J., Mahoney A.R., Mancini T.R., Matthews C.W., Sloan M., Kearney D. 1994. Test Results: SEGS LS-2 Solar Collector, Report of Sandia National Laboratories (SANDIA-94-1884), 140s.
Herold, K.E., Radermacher, R., Klein, S.A. 2016. Absorption Chillers and Heat Pumps, 2nd edition. CRC Press, Taylor & Francis Group, 346s.
Kırtepe, E. (2024). Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(76), 69-81. https://doi.org/10.21205/deufmd.2024267609
AMA
Kırtepe E. Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi. DEUFMD. January 2024;26(76):69-81. doi:10.21205/deufmd.2024267609
Chicago
Kırtepe, Erhan. “Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, no. 76 (January 2024): 69-81. https://doi.org/10.21205/deufmd.2024267609.
EndNote
Kırtepe E (January 1, 2024) Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 76 69–81.
IEEE
E. Kırtepe, “Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi”, DEUFMD, vol. 26, no. 76, pp. 69–81, 2024, doi: 10.21205/deufmd.2024267609.
ISNAD
Kırtepe, Erhan. “Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/76 (January 2024), 69-81. https://doi.org/10.21205/deufmd.2024267609.
JAMA
Kırtepe E. Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi. DEUFMD. 2024;26:69–81.
MLA
Kırtepe, Erhan. “Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 26, no. 76, 2024, pp. 69-81, doi:10.21205/deufmd.2024267609.
Vancouver
Kırtepe E. Güneş Enerjili Absorpsiyonlu Soğutma Sisteminde Kolektörde Nanoakışkan Kullanılmasının Sistem Performansına Etkisinin Termodinamik Analizi. DEUFMD. 2024;26(76):69-81.